{"title":"随机平衡布尔表达式的可满足阈值是什么?","authors":"Naomi Lindenstrauss, M. Talagrand","doi":"10.1002/rsa.21069","DOIUrl":null,"url":null,"abstract":"We consider the model of random Boolean expressions based on balanced binary trees with 2N$$ {2}^N $$ leaves, to which are randomly attributed one of kN$$ {k}_N $$ Boolean variables or their negations. We prove that if for every c>0$$ c>0 $$ it holds that kNexp(−cN)→0$$ {k}_N\\exp \\left(-c\\sqrt{N}\\right)\\to 0 $$ then asymptotically with high probability the Boolean expression is either a tautology or an antitautology. Our methods are based on the study of a certain binary operation on the set of probability measures on {0,1}I$$ {\\left\\{0,1\\right\\}}^I $$ for a finite set I.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"56 1","pages":"599 - 615"},"PeriodicalIF":0.9000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What is the satisfiability threshold of random balanced Boolean expressions?\",\"authors\":\"Naomi Lindenstrauss, M. Talagrand\",\"doi\":\"10.1002/rsa.21069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the model of random Boolean expressions based on balanced binary trees with 2N$$ {2}^N $$ leaves, to which are randomly attributed one of kN$$ {k}_N $$ Boolean variables or their negations. We prove that if for every c>0$$ c>0 $$ it holds that kNexp(−cN)→0$$ {k}_N\\\\exp \\\\left(-c\\\\sqrt{N}\\\\right)\\\\to 0 $$ then asymptotically with high probability the Boolean expression is either a tautology or an antitautology. Our methods are based on the study of a certain binary operation on the set of probability measures on {0,1}I$$ {\\\\left\\\\{0,1\\\\right\\\\}}^I $$ for a finite set I.\",\"PeriodicalId\":54523,\"journal\":{\"name\":\"Random Structures & Algorithms\",\"volume\":\"56 1\",\"pages\":\"599 - 615\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures & Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21069\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21069","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
What is the satisfiability threshold of random balanced Boolean expressions?
We consider the model of random Boolean expressions based on balanced binary trees with 2N$$ {2}^N $$ leaves, to which are randomly attributed one of kN$$ {k}_N $$ Boolean variables or their negations. We prove that if for every c>0$$ c>0 $$ it holds that kNexp(−cN)→0$$ {k}_N\exp \left(-c\sqrt{N}\right)\to 0 $$ then asymptotically with high probability the Boolean expression is either a tautology or an antitautology. Our methods are based on the study of a certain binary operation on the set of probability measures on {0,1}I$$ {\left\{0,1\right\}}^I $$ for a finite set I.
期刊介绍:
It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness.
Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.