一类无限可溶群的剩余有限性

Pub Date : 2022-03-20 DOI:10.1142/s1005386723000123
J. Liao, H. Liu, Xiaoliang Luo, Xingzhong Xu
{"title":"一类无限可溶群的剩余有限性","authors":"J. Liao, H. Liu, Xiaoliang Luo, Xingzhong Xu","doi":"10.1142/s1005386723000123","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a completely decomposable homogeneous torsion-free abelian group of rank [Formula: see text] ([Formula: see text]). Let [Formula: see text] be the split extension of [Formula: see text] by an automorphism [Formula: see text] which is a cyclic permutation of the direct components twisted by a rational integer [Formula: see text]. Then [Formula: see text] is an infinite soluble group. In this paper, the residual finiteness of [Formula: see text] is investigated.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Residual Finiteness of a Class of Infinite Soluble Groups\",\"authors\":\"J. Liao, H. Liu, Xiaoliang Luo, Xingzhong Xu\",\"doi\":\"10.1142/s1005386723000123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a completely decomposable homogeneous torsion-free abelian group of rank [Formula: see text] ([Formula: see text]). Let [Formula: see text] be the split extension of [Formula: see text] by an automorphism [Formula: see text] which is a cyclic permutation of the direct components twisted by a rational integer [Formula: see text]. Then [Formula: see text] is an infinite soluble group. In this paper, the residual finiteness of [Formula: see text] is investigated.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]为秩[公式:见文]的完全可分解齐次无扭阿贝尔群([公式:见文])。设[公式:见文]是[公式:见文]通过自同构[公式:见文]的分裂扩展,该自同构[公式:见文]是由有理数整数扭曲的直接分量的循环置换[公式:见文]。则[公式:见文]是一个无限可溶群。本文研究了[公式:见文]的残差有限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Residual Finiteness of a Class of Infinite Soluble Groups
Let [Formula: see text] be a completely decomposable homogeneous torsion-free abelian group of rank [Formula: see text] ([Formula: see text]). Let [Formula: see text] be the split extension of [Formula: see text] by an automorphism [Formula: see text] which is a cyclic permutation of the direct components twisted by a rational integer [Formula: see text]. Then [Formula: see text] is an infinite soluble group. In this paper, the residual finiteness of [Formula: see text] is investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信