{"title":"一类无限可溶群的剩余有限性","authors":"J. Liao, H. Liu, Xiaoliang Luo, Xingzhong Xu","doi":"10.1142/s1005386723000123","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a completely decomposable homogeneous torsion-free abelian group of rank [Formula: see text] ([Formula: see text]). Let [Formula: see text] be the split extension of [Formula: see text] by an automorphism [Formula: see text] which is a cyclic permutation of the direct components twisted by a rational integer [Formula: see text]. Then [Formula: see text] is an infinite soluble group. In this paper, the residual finiteness of [Formula: see text] is investigated.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Residual Finiteness of a Class of Infinite Soluble Groups\",\"authors\":\"J. Liao, H. Liu, Xiaoliang Luo, Xingzhong Xu\",\"doi\":\"10.1142/s1005386723000123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a completely decomposable homogeneous torsion-free abelian group of rank [Formula: see text] ([Formula: see text]). Let [Formula: see text] be the split extension of [Formula: see text] by an automorphism [Formula: see text] which is a cyclic permutation of the direct components twisted by a rational integer [Formula: see text]. Then [Formula: see text] is an infinite soluble group. In this paper, the residual finiteness of [Formula: see text] is investigated.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Residual Finiteness of a Class of Infinite Soluble Groups
Let [Formula: see text] be a completely decomposable homogeneous torsion-free abelian group of rank [Formula: see text] ([Formula: see text]). Let [Formula: see text] be the split extension of [Formula: see text] by an automorphism [Formula: see text] which is a cyclic permutation of the direct components twisted by a rational integer [Formula: see text]. Then [Formula: see text] is an infinite soluble group. In this paper, the residual finiteness of [Formula: see text] is investigated.