{"title":"需求模型不确定性下的最优动态定价:一种学习与学习的变异系数平方规则","authors":"N. B. Keskin","doi":"10.2139/ssrn.2487364","DOIUrl":null,"url":null,"abstract":"We consider a price-setting firm that sells a product over a continuous time horizon. The firm is uncertain about the sensitivity of demand to price adjustments, and continuously updates its prior belief on an unobservable sensitivity parameter by observing the demand responses to prices. The firm’s objective is to minimize the infinite-horizon discounted loss, relative to a clairvoyant that knows the unobservable sensitivity parameter. Using partial differential equations theory, we characterize the optimal pricing policy, and then derive a formula for the optimal learning premium that projects the value of learning onto prices. We compare and contrast the optimal pricing policy with the myopic pricing policy, and quantify the cost of myopically neglecting to charge a learning premium in prices. We show that the optimal learning premium for a firm that looks far into the future is the squared coefficient of variation (SCV) in the firm’s posterior belief. Based on this principle, we design a simple variant of the myopic policy, namely the SCV rule, and prove that this policy is long-run average optimal.","PeriodicalId":49886,"journal":{"name":"Manufacturing Engineering","volume":"33 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2014-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Optimal Dynamic Pricing with Demand Model Uncertainty: A Squared-Coefficient-of-Variation Rule for Learning and Earning\",\"authors\":\"N. B. Keskin\",\"doi\":\"10.2139/ssrn.2487364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a price-setting firm that sells a product over a continuous time horizon. The firm is uncertain about the sensitivity of demand to price adjustments, and continuously updates its prior belief on an unobservable sensitivity parameter by observing the demand responses to prices. The firm’s objective is to minimize the infinite-horizon discounted loss, relative to a clairvoyant that knows the unobservable sensitivity parameter. Using partial differential equations theory, we characterize the optimal pricing policy, and then derive a formula for the optimal learning premium that projects the value of learning onto prices. We compare and contrast the optimal pricing policy with the myopic pricing policy, and quantify the cost of myopically neglecting to charge a learning premium in prices. We show that the optimal learning premium for a firm that looks far into the future is the squared coefficient of variation (SCV) in the firm’s posterior belief. Based on this principle, we design a simple variant of the myopic policy, namely the SCV rule, and prove that this policy is long-run average optimal.\",\"PeriodicalId\":49886,\"journal\":{\"name\":\"Manufacturing Engineering\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2014-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2487364\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2139/ssrn.2487364","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Optimal Dynamic Pricing with Demand Model Uncertainty: A Squared-Coefficient-of-Variation Rule for Learning and Earning
We consider a price-setting firm that sells a product over a continuous time horizon. The firm is uncertain about the sensitivity of demand to price adjustments, and continuously updates its prior belief on an unobservable sensitivity parameter by observing the demand responses to prices. The firm’s objective is to minimize the infinite-horizon discounted loss, relative to a clairvoyant that knows the unobservable sensitivity parameter. Using partial differential equations theory, we characterize the optimal pricing policy, and then derive a formula for the optimal learning premium that projects the value of learning onto prices. We compare and contrast the optimal pricing policy with the myopic pricing policy, and quantify the cost of myopically neglecting to charge a learning premium in prices. We show that the optimal learning premium for a firm that looks far into the future is the squared coefficient of variation (SCV) in the firm’s posterior belief. Based on this principle, we design a simple variant of the myopic policy, namely the SCV rule, and prove that this policy is long-run average optimal.