需求模型不确定性下的最优动态定价:一种学习与学习的变异系数平方规则

IF 0.1 4区 工程技术 Q4 ENGINEERING, MANUFACTURING
N. B. Keskin
{"title":"需求模型不确定性下的最优动态定价:一种学习与学习的变异系数平方规则","authors":"N. B. Keskin","doi":"10.2139/ssrn.2487364","DOIUrl":null,"url":null,"abstract":"We consider a price-setting firm that sells a product over a continuous time horizon. The firm is uncertain about the sensitivity of demand to price adjustments, and continuously updates its prior belief on an unobservable sensitivity parameter by observing the demand responses to prices. The firm’s objective is to minimize the infinite-horizon discounted loss, relative to a clairvoyant that knows the unobservable sensitivity parameter. Using partial differential equations theory, we characterize the optimal pricing policy, and then derive a formula for the optimal learning premium that projects the value of learning onto prices. We compare and contrast the optimal pricing policy with the myopic pricing policy, and quantify the cost of myopically neglecting to charge a learning premium in prices. We show that the optimal learning premium for a firm that looks far into the future is the squared coefficient of variation (SCV) in the firm’s posterior belief. Based on this principle, we design a simple variant of the myopic policy, namely the SCV rule, and prove that this policy is long-run average optimal.","PeriodicalId":49886,"journal":{"name":"Manufacturing Engineering","volume":"33 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2014-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Optimal Dynamic Pricing with Demand Model Uncertainty: A Squared-Coefficient-of-Variation Rule for Learning and Earning\",\"authors\":\"N. B. Keskin\",\"doi\":\"10.2139/ssrn.2487364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a price-setting firm that sells a product over a continuous time horizon. The firm is uncertain about the sensitivity of demand to price adjustments, and continuously updates its prior belief on an unobservable sensitivity parameter by observing the demand responses to prices. The firm’s objective is to minimize the infinite-horizon discounted loss, relative to a clairvoyant that knows the unobservable sensitivity parameter. Using partial differential equations theory, we characterize the optimal pricing policy, and then derive a formula for the optimal learning premium that projects the value of learning onto prices. We compare and contrast the optimal pricing policy with the myopic pricing policy, and quantify the cost of myopically neglecting to charge a learning premium in prices. We show that the optimal learning premium for a firm that looks far into the future is the squared coefficient of variation (SCV) in the firm’s posterior belief. Based on this principle, we design a simple variant of the myopic policy, namely the SCV rule, and prove that this policy is long-run average optimal.\",\"PeriodicalId\":49886,\"journal\":{\"name\":\"Manufacturing Engineering\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2014-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2487364\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2139/ssrn.2487364","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 10

摘要

我们考虑一个定价公司,在一个连续的时间范围内销售产品。企业不确定需求对价格调整的敏感性,并通过观察需求对价格的反应不断更新其对不可观察敏感性参数的先验信念。公司的目标是最小化无限视界贴现损失,相对于知道不可观测灵敏度参数的千眼者。利用偏微分方程理论,我们描述了最优定价策略,然后推导出最优学习溢价的公式,该公式将学习的价值投射到价格上。我们将最优定价策略与近视定价策略进行了比较和对比,并量化了近视忽视在价格上收取学习溢价的成本。我们表明,对于一个放眼未来的公司来说,最优学习溢价是公司后验信念的变异系数(SCV)的平方。基于这一原理,我们设计了一种简单的近视策略,即SCV规则,并证明了该策略是长期平均最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Dynamic Pricing with Demand Model Uncertainty: A Squared-Coefficient-of-Variation Rule for Learning and Earning
We consider a price-setting firm that sells a product over a continuous time horizon. The firm is uncertain about the sensitivity of demand to price adjustments, and continuously updates its prior belief on an unobservable sensitivity parameter by observing the demand responses to prices. The firm’s objective is to minimize the infinite-horizon discounted loss, relative to a clairvoyant that knows the unobservable sensitivity parameter. Using partial differential equations theory, we characterize the optimal pricing policy, and then derive a formula for the optimal learning premium that projects the value of learning onto prices. We compare and contrast the optimal pricing policy with the myopic pricing policy, and quantify the cost of myopically neglecting to charge a learning premium in prices. We show that the optimal learning premium for a firm that looks far into the future is the squared coefficient of variation (SCV) in the firm’s posterior belief. Based on this principle, we design a simple variant of the myopic policy, namely the SCV rule, and prove that this policy is long-run average optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Engineering
Manufacturing Engineering 工程技术-工程:制造
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信