{"title":"时间控制弱无序状态下玻色-爱因斯坦凝聚变形的非平衡演化","authors":"Milan Radonji'c, A. Pelster","doi":"10.21468/SCIPOSTPHYS.10.1.008","DOIUrl":null,"url":null,"abstract":"We consider a time-dependent extension of a perturbative mean-field approach to the dirty boson problem by considering how switching on and off a weak disorder potential affects the stationary state of an initially homogeneous Bose-Einstein condensate by the emergence of a disorder-induced condensate deformation. We find that in the switch on scenario the stationary condensate deformation turns out to be a sum of an equilibrium part and a dynamically-induced part, where the latter depends on the particular driving protocol. If the disorder is switched off afterwards, the resulting condensate deformation acquires an additional dynamically-induced part in the long-time limit, while the equilibrium part vanishes. Our results demonstrate that the condensate deformation represents an indicator of the generically non-equilibrium nature of steady states of a Bose gas in a temporally controlled weak disorder.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-equilibrium evolution of Bose-Einstein condensate deformation in temporally controlled weak disorder\",\"authors\":\"Milan Radonji'c, A. Pelster\",\"doi\":\"10.21468/SCIPOSTPHYS.10.1.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a time-dependent extension of a perturbative mean-field approach to the dirty boson problem by considering how switching on and off a weak disorder potential affects the stationary state of an initially homogeneous Bose-Einstein condensate by the emergence of a disorder-induced condensate deformation. We find that in the switch on scenario the stationary condensate deformation turns out to be a sum of an equilibrium part and a dynamically-induced part, where the latter depends on the particular driving protocol. If the disorder is switched off afterwards, the resulting condensate deformation acquires an additional dynamically-induced part in the long-time limit, while the equilibrium part vanishes. Our results demonstrate that the condensate deformation represents an indicator of the generically non-equilibrium nature of steady states of a Bose gas in a temporally controlled weak disorder.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/SCIPOSTPHYS.10.1.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SCIPOSTPHYS.10.1.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-equilibrium evolution of Bose-Einstein condensate deformation in temporally controlled weak disorder
We consider a time-dependent extension of a perturbative mean-field approach to the dirty boson problem by considering how switching on and off a weak disorder potential affects the stationary state of an initially homogeneous Bose-Einstein condensate by the emergence of a disorder-induced condensate deformation. We find that in the switch on scenario the stationary condensate deformation turns out to be a sum of an equilibrium part and a dynamically-induced part, where the latter depends on the particular driving protocol. If the disorder is switched off afterwards, the resulting condensate deformation acquires an additional dynamically-induced part in the long-time limit, while the equilibrium part vanishes. Our results demonstrate that the condensate deformation represents an indicator of the generically non-equilibrium nature of steady states of a Bose gas in a temporally controlled weak disorder.