{"title":"线性化可压缩涡旋片的各向异性规律","authors":"P. Secchi","doi":"10.1142/s0219891620500113","DOIUrl":null,"url":null,"abstract":"We are concerned with supersonic vortex sheets for the Euler equations of compressible inviscid fluids in two space dimensions. For the problem with constant coefficients, in [10] the authors have derived a pseudo-differential equation which describes the time evolution of the discontinuity front of the vortex sheet. In agreement with the classical stability analysis, the problem is weakly stable if $|[v\\cdot\\tau]|>2\\sqrt{2}\\,c$, and the well-posedness was obtained in standard weighted Sobolev spaces. \nThe aim of the present paper is to improve the result of [10], by showing the existence of the solution in function spaces with some additional weighted anisotropic regularity in the frequency space.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic regularity of linearized compressible vortex sheets\",\"authors\":\"P. Secchi\",\"doi\":\"10.1142/s0219891620500113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are concerned with supersonic vortex sheets for the Euler equations of compressible inviscid fluids in two space dimensions. For the problem with constant coefficients, in [10] the authors have derived a pseudo-differential equation which describes the time evolution of the discontinuity front of the vortex sheet. In agreement with the classical stability analysis, the problem is weakly stable if $|[v\\\\cdot\\\\tau]|>2\\\\sqrt{2}\\\\,c$, and the well-posedness was obtained in standard weighted Sobolev spaces. \\nThe aim of the present paper is to improve the result of [10], by showing the existence of the solution in function spaces with some additional weighted anisotropic regularity in the frequency space.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219891620500113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219891620500113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anisotropic regularity of linearized compressible vortex sheets
We are concerned with supersonic vortex sheets for the Euler equations of compressible inviscid fluids in two space dimensions. For the problem with constant coefficients, in [10] the authors have derived a pseudo-differential equation which describes the time evolution of the discontinuity front of the vortex sheet. In agreement with the classical stability analysis, the problem is weakly stable if $|[v\cdot\tau]|>2\sqrt{2}\,c$, and the well-posedness was obtained in standard weighted Sobolev spaces.
The aim of the present paper is to improve the result of [10], by showing the existence of the solution in function spaces with some additional weighted anisotropic regularity in the frequency space.