使用模板模型生成器的混合效果转换模型

R J. Pub Date : 2021-01-01 DOI:10.32614/rj-2021-075
Bálint Tamási, T. Hothorn
{"title":"使用模板模型生成器的混合效果转换模型","authors":"Bálint Tamási, T. Hothorn","doi":"10.32614/rj-2021-075","DOIUrl":null,"url":null,"abstract":"Linear transformation models constitute a general family of parametric regression models for discrete and continuous responses. To accommodate correlated responses, the model is extended by incorporating mixed effects. This article presents the R package tramME , which builds on existing implementations of transformation models ( mlt and tram packages) as well as Laplace approximation and automatic differentiation (using the TMB package), to calculate estimates and perform likelihood inference in mixed-effects transformation models. The resulting framework can be readily applied to a wide range of regression problems with grouped data structures.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"21 1","pages":"306"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"tramME: Mixed-Effects Transformation Models Using Template Model Builder\",\"authors\":\"Bálint Tamási, T. Hothorn\",\"doi\":\"10.32614/rj-2021-075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear transformation models constitute a general family of parametric regression models for discrete and continuous responses. To accommodate correlated responses, the model is extended by incorporating mixed effects. This article presents the R package tramME , which builds on existing implementations of transformation models ( mlt and tram packages) as well as Laplace approximation and automatic differentiation (using the TMB package), to calculate estimates and perform likelihood inference in mixed-effects transformation models. The resulting framework can be readily applied to a wide range of regression problems with grouped data structures.\",\"PeriodicalId\":20974,\"journal\":{\"name\":\"R J.\",\"volume\":\"21 1\",\"pages\":\"306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2021-075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2021-075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

线性变换模型构成了离散和连续响应的参数回归模型的一般族。为了适应相关的响应,该模型通过纳入混合效应进行扩展。本文介绍了R包tramME,它建立在现有的转换模型实现(mlt和tram包)以及拉普拉斯近似和自动微分(使用TMB包)的基础上,在混合效果转换模型中计算估计并执行似然推断。由此产生的框架可以很容易地应用于具有分组数据结构的各种回归问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
tramME: Mixed-Effects Transformation Models Using Template Model Builder
Linear transformation models constitute a general family of parametric regression models for discrete and continuous responses. To accommodate correlated responses, the model is extended by incorporating mixed effects. This article presents the R package tramME , which builds on existing implementations of transformation models ( mlt and tram packages) as well as Laplace approximation and automatic differentiation (using the TMB package), to calculate estimates and perform likelihood inference in mixed-effects transformation models. The resulting framework can be readily applied to a wide range of regression problems with grouped data structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信