非不相交分解与多顶点支配律的关系

E. Dubrova, M. Teslenko, A. Martinelli
{"title":"非不相交分解与多顶点支配律的关系","authors":"E. Dubrova, M. Teslenko, A. Martinelli","doi":"10.1109/ISCAS.2004.1329048","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of non-disjoint decomposition of Boolean functions. Decomposition has multiple applications in logic synthesis, testing and formal verification. First, we show that the problem of computing non-disjoint decompositions of Boolean functions can be reduced to the problem of finding multiple-vertex dominators of circuit graphs. Then, we prove that there exists an algorithm for computing all multiple-vertex dominators of a fixed size in polynomial time. Our result is important because no polynomial-time algorithm for non-disjoint decomposition of Boolean functions is known. A set of experiments on benchmark circuits illustrates our approach.","PeriodicalId":6445,"journal":{"name":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","volume":"12 1","pages":"IV-493"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"On relation between non-disjoint decomposition and multiple-vertex dominators\",\"authors\":\"E. Dubrova, M. Teslenko, A. Martinelli\",\"doi\":\"10.1109/ISCAS.2004.1329048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of non-disjoint decomposition of Boolean functions. Decomposition has multiple applications in logic synthesis, testing and formal verification. First, we show that the problem of computing non-disjoint decompositions of Boolean functions can be reduced to the problem of finding multiple-vertex dominators of circuit graphs. Then, we prove that there exists an algorithm for computing all multiple-vertex dominators of a fixed size in polynomial time. Our result is important because no polynomial-time algorithm for non-disjoint decomposition of Boolean functions is known. A set of experiments on benchmark circuits illustrates our approach.\",\"PeriodicalId\":6445,\"journal\":{\"name\":\"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)\",\"volume\":\"12 1\",\"pages\":\"IV-493\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2004.1329048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2004.1329048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

研究了布尔函数的不相交分解问题。分解在逻辑综合、测试和形式验证中有多种应用。首先,我们证明计算布尔函数的不相交分解问题可以简化为寻找电路图的多顶点支配子的问题。然后,我们证明了存在一种算法,可以在多项式时间内计算出所有固定大小的多顶点支配子。我们的结果是重要的,因为没有多项式时间算法的布尔函数的非不相交分解是已知的。在基准电路上的一组实验说明了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On relation between non-disjoint decomposition and multiple-vertex dominators
This paper addresses the problem of non-disjoint decomposition of Boolean functions. Decomposition has multiple applications in logic synthesis, testing and formal verification. First, we show that the problem of computing non-disjoint decompositions of Boolean functions can be reduced to the problem of finding multiple-vertex dominators of circuit graphs. Then, we prove that there exists an algorithm for computing all multiple-vertex dominators of a fixed size in polynomial time. Our result is important because no polynomial-time algorithm for non-disjoint decomposition of Boolean functions is known. A set of experiments on benchmark circuits illustrates our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信