阻尼剪切梁模型的指数稳定性及有关具有分布延迟项的经典Timoshenko系统的新事实

Q3 Mathematics
Innocent Ouedraogo, G. Bayili
{"title":"阻尼剪切梁模型的指数稳定性及有关具有分布延迟项的经典Timoshenko系统的新事实","authors":"Innocent Ouedraogo, G. Bayili","doi":"10.5539/jmr.v15n3p45","DOIUrl":null,"url":null,"abstract":"We consider in this manuscript  a Timoshenko type beam model with a distributed delay term.  If the distributed delay term is small enough, we prove the global existence of solutions by using the Faedo-Galerkin approximations together with some energy estimates. Under suitable assumptions, we prove exponential stability of the solution. This result is obtained by introducing a suitable Lyapounov function.","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Stability for Damped Shear Beam Model and New Facts Related to the Classical Timoshenko System With a Distributed Delay Term\",\"authors\":\"Innocent Ouedraogo, G. Bayili\",\"doi\":\"10.5539/jmr.v15n3p45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider in this manuscript  a Timoshenko type beam model with a distributed delay term.  If the distributed delay term is small enough, we prove the global existence of solutions by using the Faedo-Galerkin approximations together with some energy estimates. Under suitable assumptions, we prove exponential stability of the solution. This result is obtained by introducing a suitable Lyapounov function.\",\"PeriodicalId\":38619,\"journal\":{\"name\":\"International Journal of Mathematics in Operational Research\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics in Operational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jmr.v15n3p45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n3p45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一个具有分布延迟项的Timoshenko型光束模型。如果分布延迟项足够小,我们利用Faedo-Galerkin近似和一些能量估计证明了解的全局存在性。在适当的假设条件下,证明了解的指数稳定性。该结果是通过引入合适的李亚普诺夫函数得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential Stability for Damped Shear Beam Model and New Facts Related to the Classical Timoshenko System With a Distributed Delay Term
We consider in this manuscript  a Timoshenko type beam model with a distributed delay term.  If the distributed delay term is small enough, we prove the global existence of solutions by using the Faedo-Galerkin approximations together with some energy estimates. Under suitable assumptions, we prove exponential stability of the solution. This result is obtained by introducing a suitable Lyapounov function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信