{"title":"无参考视频质量评价的时空特征组合模型","authors":"H. Men, Hanhe Lin, D. Saupe","doi":"10.1109/QoMEX.2018.8463426","DOIUrl":null,"url":null,"abstract":"One of the main challenges in no-reference video quality assessment is temporal variation in a video. Methods typically were designed and tested on videos with artificial distortions, without considering spatial and temporal variations simultaneously. We propose a no-reference spatiotemporal feature combination model which extracts spatiotemporal information from a video, and tested it on a database with authentic distortions. Comparing with other methods, our model gave satisfying performance for assessing the quality of natural videos.","PeriodicalId":6618,"journal":{"name":"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)","volume":"15 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Spatiotemporal Feature Combination Model for No-Reference Video Quality Assessment\",\"authors\":\"H. Men, Hanhe Lin, D. Saupe\",\"doi\":\"10.1109/QoMEX.2018.8463426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main challenges in no-reference video quality assessment is temporal variation in a video. Methods typically were designed and tested on videos with artificial distortions, without considering spatial and temporal variations simultaneously. We propose a no-reference spatiotemporal feature combination model which extracts spatiotemporal information from a video, and tested it on a database with authentic distortions. Comparing with other methods, our model gave satisfying performance for assessing the quality of natural videos.\",\"PeriodicalId\":6618,\"journal\":{\"name\":\"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)\",\"volume\":\"15 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QoMEX.2018.8463426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QoMEX.2018.8463426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatiotemporal Feature Combination Model for No-Reference Video Quality Assessment
One of the main challenges in no-reference video quality assessment is temporal variation in a video. Methods typically were designed and tested on videos with artificial distortions, without considering spatial and temporal variations simultaneously. We propose a no-reference spatiotemporal feature combination model which extracts spatiotemporal information from a video, and tested it on a database with authentic distortions. Comparing with other methods, our model gave satisfying performance for assessing the quality of natural videos.