{"title":"关于Ricci流下的最大收敛速率","authors":"Brett L. Kotschwar","doi":"10.1093/imrn/rnaa172","DOIUrl":null,"url":null,"abstract":"We estimate from above the rate at which a solution to the normalized Ricci flow on a closed manifold may converge to a limit soliton. Our main result implies that any solution which converges modulo diffeomorphisms to a soliton faster than any fixed exponential rate must itself be self-similar.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Maximal Rate of Convergence Under the Ricci Flow\",\"authors\":\"Brett L. Kotschwar\",\"doi\":\"10.1093/imrn/rnaa172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We estimate from above the rate at which a solution to the normalized Ricci flow on a closed manifold may converge to a limit soliton. Our main result implies that any solution which converges modulo diffeomorphisms to a soliton faster than any fixed exponential rate must itself be self-similar.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnaa172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imrn/rnaa172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Maximal Rate of Convergence Under the Ricci Flow
We estimate from above the rate at which a solution to the normalized Ricci flow on a closed manifold may converge to a limit soliton. Our main result implies that any solution which converges modulo diffeomorphisms to a soliton faster than any fixed exponential rate must itself be self-similar.