网络媒体客观性分类

E. Lex, A. Juffinger, M. Granitzer
{"title":"网络媒体客观性分类","authors":"E. Lex, A. Juffinger, M. Granitzer","doi":"10.1145/1810617.1810681","DOIUrl":null,"url":null,"abstract":"In this work, we assess objectivity in online news media. We propose to use topic independent features and we show in a cross-domain experiment that with standard bag-of-word models, classifiers implicitly learn topics. Our experiments revealed that our methodology can be applied across different topics with consistent classification performance.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"79 1","pages":"293-294"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Objectivity classification in online media\",\"authors\":\"E. Lex, A. Juffinger, M. Granitzer\",\"doi\":\"10.1145/1810617.1810681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we assess objectivity in online news media. We propose to use topic independent features and we show in a cross-domain experiment that with standard bag-of-word models, classifiers implicitly learn topics. Our experiments revealed that our methodology can be applied across different topics with consistent classification performance.\",\"PeriodicalId\":91270,\"journal\":{\"name\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"volume\":\"79 1\",\"pages\":\"293-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1810617.1810681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1810617.1810681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在这项工作中,我们评估了在线新闻媒体的客观性。我们建议使用主题无关特征,并在跨领域实验中表明,使用标准词袋模型,分类器隐式学习主题。我们的实验表明,我们的方法可以应用于不同的主题,并具有一致的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Objectivity classification in online media
In this work, we assess objectivity in online news media. We propose to use topic independent features and we show in a cross-domain experiment that with standard bag-of-word models, classifiers implicitly learn topics. Our experiments revealed that our methodology can be applied across different topics with consistent classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信