{"title":"关于自由群的子群的Stallings自动机的过渡单似子","authors":"I. F. Guimaraes","doi":"10.1142/s0218196723500224","DOIUrl":null,"url":null,"abstract":"Birget, Margolis, Meakin and Weil proved that a finitely generated subgroup $K$ of a free group is pure if and only if the transition monoid $M(K)$ of its Stallings automaton is aperiodic. In this paper, we establish further connections between algebraic properties of $K$ and algebraic properties of $M(K)$. We mainly focus on the cases where $M(K)$ belongs to the pseudovariety $\\overline{\\boldsymbol{\\mathbf{{H}}}}$ of finite monoids all of whose subgroups lie in a given pseudovariety $\\overline{\\boldsymbol{\\mathbf{{H}}}}$ of finite groups. We also discuss normal, malnormal and cyclonormal subgroups of $F_A$ using the transition monoid of the corresponding Stallings automaton.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"88 1","pages":"445-479"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the transition monoid of the Stallings automaton of a subgroup of a free group\",\"authors\":\"I. F. Guimaraes\",\"doi\":\"10.1142/s0218196723500224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Birget, Margolis, Meakin and Weil proved that a finitely generated subgroup $K$ of a free group is pure if and only if the transition monoid $M(K)$ of its Stallings automaton is aperiodic. In this paper, we establish further connections between algebraic properties of $K$ and algebraic properties of $M(K)$. We mainly focus on the cases where $M(K)$ belongs to the pseudovariety $\\\\overline{\\\\boldsymbol{\\\\mathbf{{H}}}}$ of finite monoids all of whose subgroups lie in a given pseudovariety $\\\\overline{\\\\boldsymbol{\\\\mathbf{{H}}}}$ of finite groups. We also discuss normal, malnormal and cyclonormal subgroups of $F_A$ using the transition monoid of the corresponding Stallings automaton.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"88 1\",\"pages\":\"445-479\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196723500224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196723500224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the transition monoid of the Stallings automaton of a subgroup of a free group
Birget, Margolis, Meakin and Weil proved that a finitely generated subgroup $K$ of a free group is pure if and only if the transition monoid $M(K)$ of its Stallings automaton is aperiodic. In this paper, we establish further connections between algebraic properties of $K$ and algebraic properties of $M(K)$. We mainly focus on the cases where $M(K)$ belongs to the pseudovariety $\overline{\boldsymbol{\mathbf{{H}}}}$ of finite monoids all of whose subgroups lie in a given pseudovariety $\overline{\boldsymbol{\mathbf{{H}}}}$ of finite groups. We also discuss normal, malnormal and cyclonormal subgroups of $F_A$ using the transition monoid of the corresponding Stallings automaton.