{"title":"由听觉-言语负荷引起的个体节律性脑活动的神经生理隔离","authors":"Sergey Gulyaev, V. Lelyuk","doi":"10.4103/2773-2398.379340","DOIUrl":null,"url":null,"abstract":"Knowledge about the rhythmic activity of neural networks associated with the implementation of a particular brain function can be used to construct diagnostic systems for objective analyses of cognitive dysfunctions. The aim of this study was to identify specific frequency-based electroencephalogram phenomena associated with speech processing. The study included data from 40 clinically healthy volunteers aged 30 to 50 years (median 32.5 years), including 23 men and 17 women. While listening to a speech stimulus, changes in bioelectrical activity over the speech centers were recorded in 23 subjects (58%). During active speech production, similar changes were recorded in 12 subjects (30%). A pairwise comparison of electroencephalogram frequencies recorded during background recording and listening to the stimuli revealed statistically significant differences in changes in rhythmic activity over Broca’s area during listening and over Wernicke's area during active speech production, while changes in rhythmic activity over Broca’s area during active speech production and over Wernicke's area during listening were less significant. The most characteristic changes in the bioelectrical activity over the speech centers during listening and speaking were fluctuations with a frequency (on average) of 17.5–17.7 Hz. This may reflect a specific electroencephalogram rhythm associated with activity in the speech areas of the brain, which could allow these regions to be more accurately identified during auditory-verbal processing.","PeriodicalId":93737,"journal":{"name":"Brain network and modulation","volume":"73 1","pages":"47 - 52"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neurophysiological isolation of individual rhythmic brain activity arising from auditory-speech load\",\"authors\":\"Sergey Gulyaev, V. Lelyuk\",\"doi\":\"10.4103/2773-2398.379340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge about the rhythmic activity of neural networks associated with the implementation of a particular brain function can be used to construct diagnostic systems for objective analyses of cognitive dysfunctions. The aim of this study was to identify specific frequency-based electroencephalogram phenomena associated with speech processing. The study included data from 40 clinically healthy volunteers aged 30 to 50 years (median 32.5 years), including 23 men and 17 women. While listening to a speech stimulus, changes in bioelectrical activity over the speech centers were recorded in 23 subjects (58%). During active speech production, similar changes were recorded in 12 subjects (30%). A pairwise comparison of electroencephalogram frequencies recorded during background recording and listening to the stimuli revealed statistically significant differences in changes in rhythmic activity over Broca’s area during listening and over Wernicke's area during active speech production, while changes in rhythmic activity over Broca’s area during active speech production and over Wernicke's area during listening were less significant. The most characteristic changes in the bioelectrical activity over the speech centers during listening and speaking were fluctuations with a frequency (on average) of 17.5–17.7 Hz. This may reflect a specific electroencephalogram rhythm associated with activity in the speech areas of the brain, which could allow these regions to be more accurately identified during auditory-verbal processing.\",\"PeriodicalId\":93737,\"journal\":{\"name\":\"Brain network and modulation\",\"volume\":\"73 1\",\"pages\":\"47 - 52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain network and modulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2773-2398.379340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain network and modulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2773-2398.379340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neurophysiological isolation of individual rhythmic brain activity arising from auditory-speech load
Knowledge about the rhythmic activity of neural networks associated with the implementation of a particular brain function can be used to construct diagnostic systems for objective analyses of cognitive dysfunctions. The aim of this study was to identify specific frequency-based electroencephalogram phenomena associated with speech processing. The study included data from 40 clinically healthy volunteers aged 30 to 50 years (median 32.5 years), including 23 men and 17 women. While listening to a speech stimulus, changes in bioelectrical activity over the speech centers were recorded in 23 subjects (58%). During active speech production, similar changes were recorded in 12 subjects (30%). A pairwise comparison of electroencephalogram frequencies recorded during background recording and listening to the stimuli revealed statistically significant differences in changes in rhythmic activity over Broca’s area during listening and over Wernicke's area during active speech production, while changes in rhythmic activity over Broca’s area during active speech production and over Wernicke's area during listening were less significant. The most characteristic changes in the bioelectrical activity over the speech centers during listening and speaking were fluctuations with a frequency (on average) of 17.5–17.7 Hz. This may reflect a specific electroencephalogram rhythm associated with activity in the speech areas of the brain, which could allow these regions to be more accurately identified during auditory-verbal processing.