Boussinesq系统强解的整体存在性和衰减速率

IF 0.7 Q2 MATHEMATICS
Lu Wang, Shuokai Yan, Qinghua Zhang
{"title":"Boussinesq系统强解的整体存在性和衰减速率","authors":"Lu Wang, Shuokai Yan, Qinghua Zhang","doi":"10.1155/2023/6512823","DOIUrl":null,"url":null,"abstract":"<jats:p>This paper focuses on the global existence and time-decay rates of the strong solution for the Boussinesq system with full viscosity in <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msup>\n <mrow>\n <mi mathvariant=\"double-struck\">R</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>n</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </math>\n </jats:inline-formula>. Under the initial assumption of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>θ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <mo>×</mo>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> with a small norm, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>n</mi>\n <mo>></mo>\n <mn>3</mn>\n </math>\n </jats:inline-formula> or <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>n</mi>\n <mo>=</mo>\n <mn>3</mn>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <msub>\n <mrow>\n <mi>θ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>r</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> for some <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>r</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>></mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula>, global existence and uniqueness of the strong solution <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>θ</mi>\n <mo>,</mo>\n <mi>u</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> for the Boussinesq system is established. This solution is proven to obey the following estimates: <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msub>\n <mrow>\n <mfenced open=\"‖\" close=\"‖\" separators=\"|\">\n <mrow>\n <mi>θ</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>t</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>r</mi>\n </mrow>\n </msub>\n <mo>≤</mo>\n <mi>C</mi>\n <msup>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>3</mn>\n <mo>−</mo>\n <mi>n</mi>\n <mo>/</mo>\n <mi>p</mi>\n </mrow>\n </mfenced>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>n</mi>\n <mo>/</mo>\n <mn>3</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo><</mo>\n <mi>∞</mi>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <msub>\n <mrow>\n <mfenced open=\"‖\" close=\"‖\" separators=\"|\">\n <mrow>\n <mi>u</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>t</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n <mo>≤</mo>\n <mi>C</mi>\n <msup>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mi>n</mi>\n <mo>/</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mi>n</mi>\n <mo>≤</mo>\n <mi>q</mi>\n <mo>≤</mo>\n <mi>∞</mi>\n ","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Existence and Decaying Rates of the Strong Solution for the Boussinesq System\",\"authors\":\"Lu Wang, Shuokai Yan, Qinghua Zhang\",\"doi\":\"10.1155/2023/6512823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>This paper focuses on the global existence and time-decay rates of the strong solution for the Boussinesq system with full viscosity in <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msup>\\n <mrow>\\n <mi mathvariant=\\\"double-struck\\\">R</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> for <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </math>\\n </jats:inline-formula>. Under the initial assumption of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>θ</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>u</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>/</mo>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> with a small norm, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>n</mi>\\n <mo>></mo>\\n <mn>3</mn>\\n </math>\\n </jats:inline-formula> or <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <msub>\\n <mrow>\\n <mi>θ</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> for some <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <msub>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>></mo>\\n <mn>1</mn>\\n </math>\\n </jats:inline-formula>, global existence and uniqueness of the strong solution <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>θ</mi>\\n <mo>,</mo>\\n <mi>u</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> for the Boussinesq system is established. This solution is proven to obey the following estimates: <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <msub>\\n <mrow>\\n <mfenced open=\\\"‖\\\" close=\\\"‖\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>θ</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </msub>\\n <mo>≤</mo>\\n <mi>C</mi>\\n <msup>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>3</mn>\\n <mo>−</mo>\\n <mi>n</mi>\\n <mo>/</mo>\\n <mi>p</mi>\\n </mrow>\\n </mfenced>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> for <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mi>n</mi>\\n <mo>/</mo>\\n <mn>3</mn>\\n <mo>≤</mo>\\n <mi>p</mi>\\n <mo><</mo>\\n <mi>∞</mi>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <msub>\\n <mrow>\\n <mfenced open=\\\"‖\\\" close=\\\"‖\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>u</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n <mo>≤</mo>\\n <mi>C</mi>\\n <msup>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>1</mn>\\n <mo>−</mo>\\n <mi>n</mi>\\n <mo>/</mo>\\n <mi>q</mi>\\n </mrow>\\n </mfenced>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> for <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\">\\n <mi>n</mi>\\n <mo>≤</mo>\\n <mi>q</mi>\\n <mo>≤</mo>\\n <mi>∞</mi>\\n \",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6512823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6512823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了n≥n时全黏度Boussinesq系统强解的整体存在性和时间衰减率3 .在θ 0的初始假设下,u 0∈Ln / 3 × L n,范数较小,n > 3或者n = 3和θ 0∈L r 0对于一些r 0 0 0 1,建立了Boussinesq系统强解θ, u的全局存在唯一性。 该解决方案被证明符合以下估计:θ tr≤C t−3−当n / 3≤p时为n / p / 2∞ ,u tp≤C t−1−n≤q≤∞时n / q / 2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Existence and Decaying Rates of the Strong Solution for the Boussinesq System
This paper focuses on the global existence and time-decay rates of the strong solution for the Boussinesq system with full viscosity in R n for n 3 . Under the initial assumption of θ 0 , u 0 L n / 3 × L n with a small norm, and n > 3 or n = 3 and θ 0 L r 0 for some r 0 > 1 , global existence and uniqueness of the strong solution θ , u for the Boussinesq system is established. This solution is proven to obey the following estimates: θ t r C t 3 n / p / 2 for n / 3 p < , u t p C t 1 n / q / 2 for n q
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信