复仿射与膨胀曲面的模空间

IF 1.2 1区 数学 Q1 MATHEMATICS
Paul Apisa, Matt Bainbridge, Jane Wang
{"title":"复仿射与膨胀曲面的模空间","authors":"Paul Apisa, Matt Bainbridge, Jane Wang","doi":"10.1515/crelle-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract We construct moduli spaces of complex affine and dilation surfaces. Using ideas of Veech [W. A. Veech, Flat surfaces, Amer. J. Math. 115 1993, 3, 589–689], we show that the moduli space 𝒜 g , n ⁢ ( 𝒎 ) {{\\mathcal{A}}_{g,n}(\\boldsymbol{m})} of genus g affine surfaces with cone points of complex order 𝒎 = ( m 1 ⁢ … , m n ) {\\boldsymbol{m}=(m_{1}\\ldots,m_{n})} is a holomorphic affine bundle over ℳ g , n {\\mathcal{M}_{g,n}} , and the moduli space 𝒟 g , n ⁢ ( 𝒎 ) {{\\mathcal{D}}_{g,n}(\\boldsymbol{m})} of dilation surfaces is a covering space of ℳ g , n {\\mathcal{M}_{g,n}} . We then classify the connected components of 𝒟 g , n ⁢ ( 𝒎 ) {{\\mathcal{D}}_{g,n}(\\boldsymbol{m})} and show that it is an orbifold- K ⁢ ( G , 1 ) {K(G,1)} , where G is the framed mapping class group of [A. Calderon and N. Salter, Framed mapping class groups and the monodromy of strata of Abelian differentials, preprint 2020].","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Moduli spaces of complex affine and dilation surfaces\",\"authors\":\"Paul Apisa, Matt Bainbridge, Jane Wang\",\"doi\":\"10.1515/crelle-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We construct moduli spaces of complex affine and dilation surfaces. Using ideas of Veech [W. A. Veech, Flat surfaces, Amer. J. Math. 115 1993, 3, 589–689], we show that the moduli space 𝒜 g , n ⁢ ( 𝒎 ) {{\\\\mathcal{A}}_{g,n}(\\\\boldsymbol{m})} of genus g affine surfaces with cone points of complex order 𝒎 = ( m 1 ⁢ … , m n ) {\\\\boldsymbol{m}=(m_{1}\\\\ldots,m_{n})} is a holomorphic affine bundle over ℳ g , n {\\\\mathcal{M}_{g,n}} , and the moduli space 𝒟 g , n ⁢ ( 𝒎 ) {{\\\\mathcal{D}}_{g,n}(\\\\boldsymbol{m})} of dilation surfaces is a covering space of ℳ g , n {\\\\mathcal{M}_{g,n}} . We then classify the connected components of 𝒟 g , n ⁢ ( 𝒎 ) {{\\\\mathcal{D}}_{g,n}(\\\\boldsymbol{m})} and show that it is an orbifold- K ⁢ ( G , 1 ) {K(G,1)} , where G is the framed mapping class group of [A. Calderon and N. Salter, Framed mapping class groups and the monodromy of strata of Abelian differentials, preprint 2020].\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0005\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0005","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

构造了复仿射面和膨胀面的模空间。使用Veech的思想[W. A.]嗯,平面,嗯。j .数学。115 1993 3 589 - 689年),我们表明,该模空间𝒜g n⁢(𝒎){{\ mathcal{一}}_ {g n} (\ boldsymbol {m})}属g仿射表面锥分复杂秩序𝒎= (m 1⁢…,m n) {\ boldsymbol {m} = (m_ {1} \ ldots m_ {n})}是一个全纯仿射束在ℳg n {\ mathcal {m} _ {g n}},和模空间𝒟g n⁢(𝒎){{\ mathcal {D}} _ {g n} (\ boldsymbol {m})}的扩张表面的覆盖空间ℳg n {\ mathcal {m} _ {g n}}。然后我们对g,n≠(𝒎){{\mathcal{D}}_{g,n}(\boldsymbol{m})}的连通分量进行分类,并证明它是一个轨道- K≠(g, 1) {K(g, 1)},其中g是[A]的框架映射类群。Calderon和N. Salter,框架映射类群和阿贝尔差分地层的单一化[j]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moduli spaces of complex affine and dilation surfaces
Abstract We construct moduli spaces of complex affine and dilation surfaces. Using ideas of Veech [W. A. Veech, Flat surfaces, Amer. J. Math. 115 1993, 3, 589–689], we show that the moduli space 𝒜 g , n ⁢ ( 𝒎 ) {{\mathcal{A}}_{g,n}(\boldsymbol{m})} of genus g affine surfaces with cone points of complex order 𝒎 = ( m 1 ⁢ … , m n ) {\boldsymbol{m}=(m_{1}\ldots,m_{n})} is a holomorphic affine bundle over ℳ g , n {\mathcal{M}_{g,n}} , and the moduli space 𝒟 g , n ⁢ ( 𝒎 ) {{\mathcal{D}}_{g,n}(\boldsymbol{m})} of dilation surfaces is a covering space of ℳ g , n {\mathcal{M}_{g,n}} . We then classify the connected components of 𝒟 g , n ⁢ ( 𝒎 ) {{\mathcal{D}}_{g,n}(\boldsymbol{m})} and show that it is an orbifold- K ⁢ ( G , 1 ) {K(G,1)} , where G is the framed mapping class group of [A. Calderon and N. Salter, Framed mapping class groups and the monodromy of strata of Abelian differentials, preprint 2020].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信