Alias Nur Fazreen, I. Hanafi, Wahab Mohamad Kahar Ab, R. Santiagoo, A. Hosta, Ting Sam Sung
{"title":"聚乙烯醇/棕榈仁壳粉末生物复合材料新材料的研制","authors":"Alias Nur Fazreen, I. Hanafi, Wahab Mohamad Kahar Ab, R. Santiagoo, A. Hosta, Ting Sam Sung","doi":"10.36959/742/208","DOIUrl":null,"url":null,"abstract":"New biocomposite films from Polyvinyl alcohol (PVA)/Palm kernel shell powder (PKSP) were prepared by solution casting method. The effect of PKSP addition on the film was studied based on the tensile properties, physical properties and biodegradability. From tensile test, it was found that the tensile properties decreased with the increasing PKSP loading in the composition. This is due to the poor interfacial adhesion and agglomeration of PKSP at high filler loading as proven by SEM micrograph. The water absorption and water vapour transmission (WVT) were also increased with PKSP loading. Higher weight loss in biodegradability test, indicating the PVA/PKSP biocomposite films had higher biodegradability compared to neat PVA film.","PeriodicalId":7252,"journal":{"name":"Advances in Environmental Studies","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Development of New Material Based on Polyvinyl Alcohol/Palm Kernel Shell Powder Biocomposites\",\"authors\":\"Alias Nur Fazreen, I. Hanafi, Wahab Mohamad Kahar Ab, R. Santiagoo, A. Hosta, Ting Sam Sung\",\"doi\":\"10.36959/742/208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New biocomposite films from Polyvinyl alcohol (PVA)/Palm kernel shell powder (PKSP) were prepared by solution casting method. The effect of PKSP addition on the film was studied based on the tensile properties, physical properties and biodegradability. From tensile test, it was found that the tensile properties decreased with the increasing PKSP loading in the composition. This is due to the poor interfacial adhesion and agglomeration of PKSP at high filler loading as proven by SEM micrograph. The water absorption and water vapour transmission (WVT) were also increased with PKSP loading. Higher weight loss in biodegradability test, indicating the PVA/PKSP biocomposite films had higher biodegradability compared to neat PVA film.\",\"PeriodicalId\":7252,\"journal\":{\"name\":\"Advances in Environmental Studies\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Environmental Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36959/742/208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36959/742/208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of New Material Based on Polyvinyl Alcohol/Palm Kernel Shell Powder Biocomposites
New biocomposite films from Polyvinyl alcohol (PVA)/Palm kernel shell powder (PKSP) were prepared by solution casting method. The effect of PKSP addition on the film was studied based on the tensile properties, physical properties and biodegradability. From tensile test, it was found that the tensile properties decreased with the increasing PKSP loading in the composition. This is due to the poor interfacial adhesion and agglomeration of PKSP at high filler loading as proven by SEM micrograph. The water absorption and water vapour transmission (WVT) were also increased with PKSP loading. Higher weight loss in biodegradability test, indicating the PVA/PKSP biocomposite films had higher biodegradability compared to neat PVA film.