{"title":"高属单细胞图中的短周期","authors":"S. Janson, B. Louf","doi":"10.1214/21-aihp1218","DOIUrl":null,"url":null,"abstract":"We study large uniform random maps with one face whose genus grows linearly with the number of edges, which are a model of discrete hyperbolic geometry. In previous works, several hyperbolic geometric features have been investigated. In the present work, we study the number of short cycles in a uniform unicellular map of high genus, and we show that it converges to a Poisson distribution. As a corollary, we obtain the law of the systole of uniform unicellular maps in high genus. We also obtain the asymptotic distribution of the vertex degrees in such a map.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Short cycles in high genus unicellular maps\",\"authors\":\"S. Janson, B. Louf\",\"doi\":\"10.1214/21-aihp1218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study large uniform random maps with one face whose genus grows linearly with the number of edges, which are a model of discrete hyperbolic geometry. In previous works, several hyperbolic geometric features have been investigated. In the present work, we study the number of short cycles in a uniform unicellular map of high genus, and we show that it converges to a Poisson distribution. As a corollary, we obtain the law of the systole of uniform unicellular maps in high genus. We also obtain the asymptotic distribution of the vertex degrees in such a map.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aihp1218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
We study large uniform random maps with one face whose genus grows linearly with the number of edges, which are a model of discrete hyperbolic geometry. In previous works, several hyperbolic geometric features have been investigated. In the present work, we study the number of short cycles in a uniform unicellular map of high genus, and we show that it converges to a Poisson distribution. As a corollary, we obtain the law of the systole of uniform unicellular maps in high genus. We also obtain the asymptotic distribution of the vertex degrees in such a map.