复盖的有理双点混合特性

IF 0.4 Q4 MATHEMATICS
Javier Carvajal-Rojas, Linquan Ma, Thomas Polstra, Karl Schwede, Kevin Tucker
{"title":"复盖的有理双点混合特性","authors":"Javier Carvajal-Rojas, Linquan Ma, Thomas Polstra, Karl Schwede, Kevin Tucker","doi":"10.5427/jsing.2021.23h","DOIUrl":null,"url":null,"abstract":"We further the classification of rational surface singularities. Suppose $(S, \\mathfrak{n}, \\mathcal{k})$ is a strictly Henselian regular local ring of mixed characteristic $(0, p > 5)$. We classify functions $f$ for which $S/(f)$ has an isolated rational singularity at the maximal ideal $\\mathfrak{n}$. The classification of such functions are used to show that if $(R, \\mathfrak{m}, \\mathcal{k})$ is an excellent, strictly Henselian, Gorenstein rational singularity of dimension $2$ and mixed characteristic $(0, p > 5)$, then there exists a split finite cover of $\\mbox{Spec}(R)$ by a regular scheme. We give an application of our result to the study of $2$-dimensional BCM-regular singularities in mixed characteristic.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Covers of rational double points in mixed characteristic\",\"authors\":\"Javier Carvajal-Rojas, Linquan Ma, Thomas Polstra, Karl Schwede, Kevin Tucker\",\"doi\":\"10.5427/jsing.2021.23h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We further the classification of rational surface singularities. Suppose $(S, \\\\mathfrak{n}, \\\\mathcal{k})$ is a strictly Henselian regular local ring of mixed characteristic $(0, p > 5)$. We classify functions $f$ for which $S/(f)$ has an isolated rational singularity at the maximal ideal $\\\\mathfrak{n}$. The classification of such functions are used to show that if $(R, \\\\mathfrak{m}, \\\\mathcal{k})$ is an excellent, strictly Henselian, Gorenstein rational singularity of dimension $2$ and mixed characteristic $(0, p > 5)$, then there exists a split finite cover of $\\\\mbox{Spec}(R)$ by a regular scheme. We give an application of our result to the study of $2$-dimensional BCM-regular singularities in mixed characteristic.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2021.23h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2021.23h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

进一步给出了有理曲面奇点的分类。假设$(S, \mathfrak{n}, \mathfrak{k})$是一个混合特征$(0,p > 5)$的严格Henselian正则局部环。我们对函数$f$进行分类,其中$S/(f)$在最大理想$\mathfrak{n}$处具有孤立的有理奇点。利用这类函数的分类表明,如果$(R, \mathfrak{m}, \mathcal{k})$是一个优秀的、严格的Henselian、Gorenstein的2维奇异点和混合特征$(0,p > 5)$,则存在一个正则格式下$\mbox{Spec}(R)$的分裂有限覆盖。将所得结果应用于混合特征中$2$维bcm正则奇异性的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covers of rational double points in mixed characteristic
We further the classification of rational surface singularities. Suppose $(S, \mathfrak{n}, \mathcal{k})$ is a strictly Henselian regular local ring of mixed characteristic $(0, p > 5)$. We classify functions $f$ for which $S/(f)$ has an isolated rational singularity at the maximal ideal $\mathfrak{n}$. The classification of such functions are used to show that if $(R, \mathfrak{m}, \mathcal{k})$ is an excellent, strictly Henselian, Gorenstein rational singularity of dimension $2$ and mixed characteristic $(0, p > 5)$, then there exists a split finite cover of $\mbox{Spec}(R)$ by a regular scheme. We give an application of our result to the study of $2$-dimensional BCM-regular singularities in mixed characteristic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信