Jingbang Chen, Yang P. Liu, Richard Peng, Arvind Ramaswami
{"title":"正则化调度下Sinkhorn的指数收敛性","authors":"Jingbang Chen, Yang P. Liu, Richard Peng, Arvind Ramaswami","doi":"10.48550/arXiv.2207.00736","DOIUrl":null,"url":null,"abstract":"In 2013, Cuturi [Cut13] introduced the Sinkhorn algorithm for matrix scaling as a method to compute solutions to regularized optimal transport problems. In this paper, aiming at a better convergence rate for a high accuracy solution, we work on understanding the Sinkhorn algorithm under regularization scheduling, and thus modify it with a mechanism that adaptively doubles the regularization parameter $\\eta$ periodically. We prove that such modified version of Sinkhorn has an exponential convergence rate as iteration complexity depending on $\\log(1/\\varepsilon)$ instead of $\\varepsilon^{-O(1)}$ from previous analyses [Cut13][ANWR17] in the optimal transport problems with integral supply and demand. Furthermore, with cost and capacity scaling procedures, the general optimal transport problem can be solved with a logarithmic dependence on $1/\\varepsilon$ as well.","PeriodicalId":93610,"journal":{"name":"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)","volume":"81 1","pages":"180-188"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exponential Convergence of Sinkhorn Under Regularization Scheduling\",\"authors\":\"Jingbang Chen, Yang P. Liu, Richard Peng, Arvind Ramaswami\",\"doi\":\"10.48550/arXiv.2207.00736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2013, Cuturi [Cut13] introduced the Sinkhorn algorithm for matrix scaling as a method to compute solutions to regularized optimal transport problems. In this paper, aiming at a better convergence rate for a high accuracy solution, we work on understanding the Sinkhorn algorithm under regularization scheduling, and thus modify it with a mechanism that adaptively doubles the regularization parameter $\\\\eta$ periodically. We prove that such modified version of Sinkhorn has an exponential convergence rate as iteration complexity depending on $\\\\log(1/\\\\varepsilon)$ instead of $\\\\varepsilon^{-O(1)}$ from previous analyses [Cut13][ANWR17] in the optimal transport problems with integral supply and demand. Furthermore, with cost and capacity scaling procedures, the general optimal transport problem can be solved with a logarithmic dependence on $1/\\\\varepsilon$ as well.\",\"PeriodicalId\":93610,\"journal\":{\"name\":\"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)\",\"volume\":\"81 1\",\"pages\":\"180-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.00736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.00736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exponential Convergence of Sinkhorn Under Regularization Scheduling
In 2013, Cuturi [Cut13] introduced the Sinkhorn algorithm for matrix scaling as a method to compute solutions to regularized optimal transport problems. In this paper, aiming at a better convergence rate for a high accuracy solution, we work on understanding the Sinkhorn algorithm under regularization scheduling, and thus modify it with a mechanism that adaptively doubles the regularization parameter $\eta$ periodically. We prove that such modified version of Sinkhorn has an exponential convergence rate as iteration complexity depending on $\log(1/\varepsilon)$ instead of $\varepsilon^{-O(1)}$ from previous analyses [Cut13][ANWR17] in the optimal transport problems with integral supply and demand. Furthermore, with cost and capacity scaling procedures, the general optimal transport problem can be solved with a logarithmic dependence on $1/\varepsilon$ as well.