A. Titenko, L. Demchenko, M. Babanli, Tymur Bykanov, Oleksii Titenko, S. Huseynov
{"title":"温度和机械应力影响下Fe-Ni-Co-Ti纳米复合材料的功能特性","authors":"A. Titenko, L. Demchenko, M. Babanli, Tymur Bykanov, Oleksii Titenko, S. Huseynov","doi":"10.1109/NAP51885.2021.9568542","DOIUrl":null,"url":null,"abstract":"The paper presents the functional properties of new Fe-Ni-Co-Ti shape memory nanocomposite, formed as a result of supersaturated solid solution aging. It was found that Fe-Ni-Co-Ti alloys in certain intervals exhibit unusual deformation and electrical effects when exposed to temperature and mechanical stresses. The reasons and factors that contribute to the achievement of large superelastic deformations and reactive stresses are analyzed. The appearance of differential thermo-emf (thermo-electromotive force) signals during the induction of martensitic transformation is studied experimentally. A correlation has been established between the temperature dependences of the differential thermo-emf and the electrical resistance of the studied alloy. Unique thermal power and the effect of deformation on electrical properties are able to compete with mechanical power drives, tools and signaling devices. Their uniqueness lies in the ability to reversibly restore the original shape and dimensions under thermal power loading conditions and, at the same time, perform useful work, signaling changes in external conditions. The formation of the required structure and functional properties is facilitated by the formation of a system of dispersed particles.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"49 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Properties of Fe-Ni-Co-Ti Nanocomposite under the Influence of Temperature and Mechanical Stress\",\"authors\":\"A. Titenko, L. Demchenko, M. Babanli, Tymur Bykanov, Oleksii Titenko, S. Huseynov\",\"doi\":\"10.1109/NAP51885.2021.9568542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the functional properties of new Fe-Ni-Co-Ti shape memory nanocomposite, formed as a result of supersaturated solid solution aging. It was found that Fe-Ni-Co-Ti alloys in certain intervals exhibit unusual deformation and electrical effects when exposed to temperature and mechanical stresses. The reasons and factors that contribute to the achievement of large superelastic deformations and reactive stresses are analyzed. The appearance of differential thermo-emf (thermo-electromotive force) signals during the induction of martensitic transformation is studied experimentally. A correlation has been established between the temperature dependences of the differential thermo-emf and the electrical resistance of the studied alloy. Unique thermal power and the effect of deformation on electrical properties are able to compete with mechanical power drives, tools and signaling devices. Their uniqueness lies in the ability to reversibly restore the original shape and dimensions under thermal power loading conditions and, at the same time, perform useful work, signaling changes in external conditions. The formation of the required structure and functional properties is facilitated by the formation of a system of dispersed particles.\",\"PeriodicalId\":6735,\"journal\":{\"name\":\"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)\",\"volume\":\"49 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAP51885.2021.9568542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51885.2021.9568542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functional Properties of Fe-Ni-Co-Ti Nanocomposite under the Influence of Temperature and Mechanical Stress
The paper presents the functional properties of new Fe-Ni-Co-Ti shape memory nanocomposite, formed as a result of supersaturated solid solution aging. It was found that Fe-Ni-Co-Ti alloys in certain intervals exhibit unusual deformation and electrical effects when exposed to temperature and mechanical stresses. The reasons and factors that contribute to the achievement of large superelastic deformations and reactive stresses are analyzed. The appearance of differential thermo-emf (thermo-electromotive force) signals during the induction of martensitic transformation is studied experimentally. A correlation has been established between the temperature dependences of the differential thermo-emf and the electrical resistance of the studied alloy. Unique thermal power and the effect of deformation on electrical properties are able to compete with mechanical power drives, tools and signaling devices. Their uniqueness lies in the ability to reversibly restore the original shape and dimensions under thermal power loading conditions and, at the same time, perform useful work, signaling changes in external conditions. The formation of the required structure and functional properties is facilitated by the formation of a system of dispersed particles.