基于扩展UFIR滤波的广义非线性状态估计算法

Moises Granados-Cruz, Y. Shmaliy, Shunyi Zhao
{"title":"基于扩展UFIR滤波的广义非线性状态估计算法","authors":"Moises Granados-Cruz, Y. Shmaliy, Shunyi Zhao","doi":"10.1109/ICEEE.2014.6978257","DOIUrl":null,"url":null,"abstract":"The unbiased finite impulse response (UFIR) filter provides better accuracy when the noise statistics are not fully known. Based on the UFIR approach, a generalized algorithm is developed for extended UFIR (EFIR) filtering of nonlinear models in discrete time state space. As well as the UFIR filter, the EFIR filter completely ignore the noise statistics and requires an optimal averaging horizon of Nopt points. The optimal horizon can be determined via measurements with much smaller efforts and cost than for the noise statistics. These properties of EFIR filtering are distinctive advantages against the extended Kalman filter (EKF). Extensive simulations confirm that the proposed iterative EFIR filtering algorithm is more successful in accuracy and more robust than EKF under the unknown noise statistics and model uncertainties.","PeriodicalId":6661,"journal":{"name":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"37 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized algorithm for nonlinear state estimation using extended UFIR filtering\",\"authors\":\"Moises Granados-Cruz, Y. Shmaliy, Shunyi Zhao\",\"doi\":\"10.1109/ICEEE.2014.6978257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unbiased finite impulse response (UFIR) filter provides better accuracy when the noise statistics are not fully known. Based on the UFIR approach, a generalized algorithm is developed for extended UFIR (EFIR) filtering of nonlinear models in discrete time state space. As well as the UFIR filter, the EFIR filter completely ignore the noise statistics and requires an optimal averaging horizon of Nopt points. The optimal horizon can be determined via measurements with much smaller efforts and cost than for the noise statistics. These properties of EFIR filtering are distinctive advantages against the extended Kalman filter (EKF). Extensive simulations confirm that the proposed iterative EFIR filtering algorithm is more successful in accuracy and more robust than EKF under the unknown noise statistics and model uncertainties.\",\"PeriodicalId\":6661,\"journal\":{\"name\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"37 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2014.6978257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2014.6978257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无偏有限脉冲响应(UFIR)滤波器在噪声统计数据不完全知道的情况下提供了更好的精度。在UFIR方法的基础上,提出了一种适用于离散时间状态空间非线性模型的扩展UFIR (EFIR)滤波的广义算法。与UFIR滤波器一样,EFIR滤波器完全忽略噪声统计,并要求Nopt点的最佳平均水平。与噪声统计相比,通过测量可以以更小的努力和成本确定最佳水平。EFIR滤波的这些特性与扩展卡尔曼滤波(EKF)相比具有明显的优势。大量的仿真结果表明,在未知噪声统计量和模型不确定性下,所提出的迭代EFIR滤波算法比EKF算法具有更高的精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized algorithm for nonlinear state estimation using extended UFIR filtering
The unbiased finite impulse response (UFIR) filter provides better accuracy when the noise statistics are not fully known. Based on the UFIR approach, a generalized algorithm is developed for extended UFIR (EFIR) filtering of nonlinear models in discrete time state space. As well as the UFIR filter, the EFIR filter completely ignore the noise statistics and requires an optimal averaging horizon of Nopt points. The optimal horizon can be determined via measurements with much smaller efforts and cost than for the noise statistics. These properties of EFIR filtering are distinctive advantages against the extended Kalman filter (EKF). Extensive simulations confirm that the proposed iterative EFIR filtering algorithm is more successful in accuracy and more robust than EKF under the unknown noise statistics and model uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信