线性ODE的不敏感控制

IF 0.5 Q3 MATHEMATICS
M. López-García, Alberto Pena-García, Luz de Teresa
{"title":"线性ODE的不敏感控制","authors":"M. López-García, Alberto Pena-García, Luz de Teresa","doi":"10.52846/ami.v49i1.1636","DOIUrl":null,"url":null,"abstract":"In this paper we present some results regarding insensitizing controls for finite dimensional systems. The concept was introduced by J. L. Lions in the context of partial differential equations and, as far as we know, is a problem that has not been treated in literature for ordinary differential equations. The concept in this situation arises in a natural way when treating the semidiscrete one for the heat equation. We present some results in the linear framework.","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"96 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insensitizing controls for linear ODE's\",\"authors\":\"M. López-García, Alberto Pena-García, Luz de Teresa\",\"doi\":\"10.52846/ami.v49i1.1636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present some results regarding insensitizing controls for finite dimensional systems. The concept was introduced by J. L. Lions in the context of partial differential equations and, as far as we know, is a problem that has not been treated in literature for ordinary differential equations. The concept in this situation arises in a natural way when treating the semidiscrete one for the heat equation. We present some results in the linear framework.\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v49i1.1636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v49i1.1636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了有限维系统的不敏感控制的一些结果。这个概念是由j.l. Lions在偏微分方程的背景下引入的,据我们所知,这个问题在常微分方程的文献中还没有被处理过。这种情况下的概念在处理热方程的半离散方程时自然产生。我们在线性框架下给出了一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insensitizing controls for linear ODE's
In this paper we present some results regarding insensitizing controls for finite dimensional systems. The concept was introduced by J. L. Lions in the context of partial differential equations and, as far as we know, is a problem that has not been treated in literature for ordinary differential equations. The concept in this situation arises in a natural way when treating the semidiscrete one for the heat equation. We present some results in the linear framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信