{"title":"CeFlow:使用规范化流的表格数据的鲁棒和有效的反事实解释框架","authors":"Tri Dung Duong, Qian Li, Guandong Xu","doi":"10.48550/arXiv.2303.14668","DOIUrl":null,"url":null,"abstract":"Counterfactual explanation is a form of interpretable machine learning that generates perturbations on a sample to achieve the desired outcome. The generated samples can act as instructions to guide end users on how to observe the desired results by altering samples. Although state-of-the-art counterfactual explanation methods are proposed to use variational autoencoder (VAE) to achieve promising improvements, they suffer from two major limitations: 1) the counterfactuals generation is prohibitively slow, which prevents algorithms from being deployed in interactive environments; 2) the counterfactual explanation algorithms produce unstable results due to the randomness in the sampling procedure of variational autoencoder. In this work, to address the above limitations, we design a robust and efficient counterfactual explanation framework, namely CeFlow, which utilizes normalizing flows for the mixed-type of continuous and categorical features. Numerical experiments demonstrate that our technique compares favorably to state-of-the-art methods. We release our source at https://github.com/tridungduong16/fairCE.git for reproducing the results.","PeriodicalId":91995,"journal":{"name":"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...","volume":"9 1","pages":"133-144"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data using Normalizing Flows\",\"authors\":\"Tri Dung Duong, Qian Li, Guandong Xu\",\"doi\":\"10.48550/arXiv.2303.14668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counterfactual explanation is a form of interpretable machine learning that generates perturbations on a sample to achieve the desired outcome. The generated samples can act as instructions to guide end users on how to observe the desired results by altering samples. Although state-of-the-art counterfactual explanation methods are proposed to use variational autoencoder (VAE) to achieve promising improvements, they suffer from two major limitations: 1) the counterfactuals generation is prohibitively slow, which prevents algorithms from being deployed in interactive environments; 2) the counterfactual explanation algorithms produce unstable results due to the randomness in the sampling procedure of variational autoencoder. In this work, to address the above limitations, we design a robust and efficient counterfactual explanation framework, namely CeFlow, which utilizes normalizing flows for the mixed-type of continuous and categorical features. Numerical experiments demonstrate that our technique compares favorably to state-of-the-art methods. We release our source at https://github.com/tridungduong16/fairCE.git for reproducing the results.\",\"PeriodicalId\":91995,\"journal\":{\"name\":\"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...\",\"volume\":\"9 1\",\"pages\":\"133-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.14668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.14668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data using Normalizing Flows
Counterfactual explanation is a form of interpretable machine learning that generates perturbations on a sample to achieve the desired outcome. The generated samples can act as instructions to guide end users on how to observe the desired results by altering samples. Although state-of-the-art counterfactual explanation methods are proposed to use variational autoencoder (VAE) to achieve promising improvements, they suffer from two major limitations: 1) the counterfactuals generation is prohibitively slow, which prevents algorithms from being deployed in interactive environments; 2) the counterfactual explanation algorithms produce unstable results due to the randomness in the sampling procedure of variational autoencoder. In this work, to address the above limitations, we design a robust and efficient counterfactual explanation framework, namely CeFlow, which utilizes normalizing flows for the mixed-type of continuous and categorical features. Numerical experiments demonstrate that our technique compares favorably to state-of-the-art methods. We release our source at https://github.com/tridungduong16/fairCE.git for reproducing the results.