Vasudeva Reddy Tatiparthi, M. Rao, Santosh Kumar, Hindumathi
{"title":"MEMS层流检测和分析静脉凝血效果在早期心梗诊断中的应用","authors":"Vasudeva Reddy Tatiparthi, M. Rao, Santosh Kumar, Hindumathi","doi":"10.3934/bioeng.2023001","DOIUrl":null,"url":null,"abstract":"The primary objective of the research article is to describe the functionality of wrist watch which acts as a digital stethoscope to measure health constraints such as heart pulse through blood pressure. The second objective is the detection of blockages of an artery due to fatty, cholesterol-deposited, over a period when the blood is passing through due to stress and exercise, etc. Pressure and velocity are two inputs with their respective results of contrast and expansion of veins at the outputs. The major parameters in detecting the laminar flow are pressure and velocity. These parameters of a vein are analyzed by integrating valves in the vein. The movement of blood laminar flow in the vein is captured by a MEMS-based piezoelectric sensor by its functionality. The proposed design performance accuracy is estimated by modeling of vein's laminar flow when blood is circulating. The coagulation effect of the vein is used to measure heart stroke by placing MEMS along with the stent, as MEMS are tiny in size. The functionality of a digital Stethoscope works on the piezoelectric effect that generates an electrical signal when pressure is applied from the vein. The accuracy, functionality, and performance of the design can be analyzed by COMSOL multi-physics. Applications of MEMS include detection, prevention, and alert during the second heart stroke, and also used in the bionic eye and automotive electronics.","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"81 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection and analysis of coagulation effect in vein using MEMS laminar flow for the early heart stroke diagnosis\",\"authors\":\"Vasudeva Reddy Tatiparthi, M. Rao, Santosh Kumar, Hindumathi\",\"doi\":\"10.3934/bioeng.2023001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary objective of the research article is to describe the functionality of wrist watch which acts as a digital stethoscope to measure health constraints such as heart pulse through blood pressure. The second objective is the detection of blockages of an artery due to fatty, cholesterol-deposited, over a period when the blood is passing through due to stress and exercise, etc. Pressure and velocity are two inputs with their respective results of contrast and expansion of veins at the outputs. The major parameters in detecting the laminar flow are pressure and velocity. These parameters of a vein are analyzed by integrating valves in the vein. The movement of blood laminar flow in the vein is captured by a MEMS-based piezoelectric sensor by its functionality. The proposed design performance accuracy is estimated by modeling of vein's laminar flow when blood is circulating. The coagulation effect of the vein is used to measure heart stroke by placing MEMS along with the stent, as MEMS are tiny in size. The functionality of a digital Stethoscope works on the piezoelectric effect that generates an electrical signal when pressure is applied from the vein. The accuracy, functionality, and performance of the design can be analyzed by COMSOL multi-physics. Applications of MEMS include detection, prevention, and alert during the second heart stroke, and also used in the bionic eye and automotive electronics.\",\"PeriodicalId\":45029,\"journal\":{\"name\":\"AIMS Bioengineering\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/bioeng.2023001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/bioeng.2023001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Detection and analysis of coagulation effect in vein using MEMS laminar flow for the early heart stroke diagnosis
The primary objective of the research article is to describe the functionality of wrist watch which acts as a digital stethoscope to measure health constraints such as heart pulse through blood pressure. The second objective is the detection of blockages of an artery due to fatty, cholesterol-deposited, over a period when the blood is passing through due to stress and exercise, etc. Pressure and velocity are two inputs with their respective results of contrast and expansion of veins at the outputs. The major parameters in detecting the laminar flow are pressure and velocity. These parameters of a vein are analyzed by integrating valves in the vein. The movement of blood laminar flow in the vein is captured by a MEMS-based piezoelectric sensor by its functionality. The proposed design performance accuracy is estimated by modeling of vein's laminar flow when blood is circulating. The coagulation effect of the vein is used to measure heart stroke by placing MEMS along with the stent, as MEMS are tiny in size. The functionality of a digital Stethoscope works on the piezoelectric effect that generates an electrical signal when pressure is applied from the vein. The accuracy, functionality, and performance of the design can be analyzed by COMSOL multi-physics. Applications of MEMS include detection, prevention, and alert during the second heart stroke, and also used in the bionic eye and automotive electronics.