基于区间估计的增强数据建模方法

P. Krammer, M. Kvassay, L. Hluchý
{"title":"基于区间估计的增强数据建模方法","authors":"P. Krammer, M. Kvassay, L. Hluchý","doi":"10.1109/SISY.2018.8524757","DOIUrl":null,"url":null,"abstract":"This paper deals with regression tasks on real-valued numerical data attributes. A special data transformation formulated in our earlier work is combined with a new and enhanced weighting strategy in order to improve prediction accuracy. The proposed data modelling approach offers several advantages: it does not depend on the particular regression model used and it enables the analyst to calculate tolerance interval estimates as well as the probability that the target attribute exceeds arbitrary predefined thresholds. We tested our approach on three real-world datasets. In all the three cases it reliably improved and stabilized the prediction accuracy (measured by the average root mean squared error for each dataset) as well as the quality of tolerance interval estimates.","PeriodicalId":6647,"journal":{"name":"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"52 1","pages":"000179-000184"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Data Modelling Approach with Interval Estimation\",\"authors\":\"P. Krammer, M. Kvassay, L. Hluchý\",\"doi\":\"10.1109/SISY.2018.8524757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with regression tasks on real-valued numerical data attributes. A special data transformation formulated in our earlier work is combined with a new and enhanced weighting strategy in order to improve prediction accuracy. The proposed data modelling approach offers several advantages: it does not depend on the particular regression model used and it enables the analyst to calculate tolerance interval estimates as well as the probability that the target attribute exceeds arbitrary predefined thresholds. We tested our approach on three real-world datasets. In all the three cases it reliably improved and stabilized the prediction accuracy (measured by the average root mean squared error for each dataset) as well as the quality of tolerance interval estimates.\",\"PeriodicalId\":6647,\"journal\":{\"name\":\"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)\",\"volume\":\"52 1\",\"pages\":\"000179-000184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISY.2018.8524757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2018.8524757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了实值数值数据属性的回归问题。为了提高预测精度,我们将早期工作中制定的特殊数据转换与新的增强加权策略相结合。所提出的数据建模方法提供了几个优点:它不依赖于所使用的特定回归模型,它使分析人员能够计算公差区间估计以及目标属性超过任意预定义阈值的概率。我们在三个真实世界的数据集上测试了我们的方法。在所有三种情况下,它可靠地提高和稳定了预测精度(通过每个数据集的平均均方根误差测量)以及公差区间估计的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Data Modelling Approach with Interval Estimation
This paper deals with regression tasks on real-valued numerical data attributes. A special data transformation formulated in our earlier work is combined with a new and enhanced weighting strategy in order to improve prediction accuracy. The proposed data modelling approach offers several advantages: it does not depend on the particular regression model used and it enables the analyst to calculate tolerance interval estimates as well as the probability that the target attribute exceeds arbitrary predefined thresholds. We tested our approach on three real-world datasets. In all the three cases it reliably improved and stabilized the prediction accuracy (measured by the average root mean squared error for each dataset) as well as the quality of tolerance interval estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信