风力发电永磁同步发电机的分析设计方法

Q4 Energy
V. Ballestín-Bernad, J. S. Artal-Sevil, J. A. Domínguez-Navarro
{"title":"风力发电永磁同步发电机的分析设计方法","authors":"V. Ballestín-Bernad, J. S. Artal-Sevil, J. A. Domínguez-Navarro","doi":"10.24084/repqj21.418","DOIUrl":null,"url":null,"abstract":"In this paper a novel analytical design methodology for wind power permanent magnet synchronous generators is presented. This kind of electric generator plays a major role in small-scale wind energy conversion systems up to 10 kW. The proposed diameter-cubed sizing equation is based both on the generator requirements, imposed by the application, and the design parameters that rely on the designer criteria. The magnetic field waveforms of both the permanent magnets field and the armature field are considered from the first moment through the winding factors, as well as the slots effects given by the Carter factor. The analytical model of the permanent magnet synchronous generator is validated with the finite element method, showing good agreement, both with no load and under load. As the generator is unsaturated, the main source of divergence between the analytical and the finite element model are the iron losses, due to the nonuniform magnetic field distribution.","PeriodicalId":21076,"journal":{"name":"Renewable Energy and Power Quality Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analytical Design Methodology for Wind Power Permanent Magnet Synchronous Generators\",\"authors\":\"V. Ballestín-Bernad, J. S. Artal-Sevil, J. A. Domínguez-Navarro\",\"doi\":\"10.24084/repqj21.418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel analytical design methodology for wind power permanent magnet synchronous generators is presented. This kind of electric generator plays a major role in small-scale wind energy conversion systems up to 10 kW. The proposed diameter-cubed sizing equation is based both on the generator requirements, imposed by the application, and the design parameters that rely on the designer criteria. The magnetic field waveforms of both the permanent magnets field and the armature field are considered from the first moment through the winding factors, as well as the slots effects given by the Carter factor. The analytical model of the permanent magnet synchronous generator is validated with the finite element method, showing good agreement, both with no load and under load. As the generator is unsaturated, the main source of divergence between the analytical and the finite element model are the iron losses, due to the nonuniform magnetic field distribution.\",\"PeriodicalId\":21076,\"journal\":{\"name\":\"Renewable Energy and Power Quality Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy and Power Quality Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24084/repqj21.418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy and Power Quality Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24084/repqj21.418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的风电永磁同步发电机的分析设计方法。这种发电机在10千瓦以下的小型风能转换系统中起着重要作用。所建议的直径-立方尺寸方程基于应用程序施加的发电机要求和依赖于设计师标准的设计参数。从一阶矩开始考虑永磁体场和电枢场的磁场波形,通过绕组因素,以及卡特因素给出的槽效应。用有限元法对永磁同步发电机的解析模型进行了验证,无论在空载还是有载情况下,解析模型都具有较好的一致性。由于发电机是不饱和的,由于磁场分布不均匀,导致分析模型与有限元模型之间的分歧主要来自铁的损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Design Methodology for Wind Power Permanent Magnet Synchronous Generators
In this paper a novel analytical design methodology for wind power permanent magnet synchronous generators is presented. This kind of electric generator plays a major role in small-scale wind energy conversion systems up to 10 kW. The proposed diameter-cubed sizing equation is based both on the generator requirements, imposed by the application, and the design parameters that rely on the designer criteria. The magnetic field waveforms of both the permanent magnets field and the armature field are considered from the first moment through the winding factors, as well as the slots effects given by the Carter factor. The analytical model of the permanent magnet synchronous generator is validated with the finite element method, showing good agreement, both with no load and under load. As the generator is unsaturated, the main source of divergence between the analytical and the finite element model are the iron losses, due to the nonuniform magnetic field distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy and Power Quality Journal
Renewable Energy and Power Quality Journal Energy-Energy Engineering and Power Technology
CiteScore
0.70
自引率
0.00%
发文量
147
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信