Gorenstein射影相和Co-Tate同调函子

Pub Date : 2022-03-20 DOI:10.1142/s1005386723000020
Zhongkui Liu, Li Wang
{"title":"Gorenstein射影相和Co-Tate同调函子","authors":"Zhongkui Liu, Li Wang","doi":"10.1142/s1005386723000020","DOIUrl":null,"url":null,"abstract":"For a local commutative Gorenstein ring [Formula: see text], Enochs et al. in [Gorenstein projective resolvents, Comm. Algebra 44 (2016) 3989–4000] defined a functor [Formula: see text] and showed that this functor can be computed by taking a totally acyclic complex arising from a projective coresolution of the first component or a totally acyclic complex arising from a projective resolution of the second component. In order to define the functor [Formula: see text] over general rings, we introduce the right Gorenstein projective dimension of an [Formula: see text]-module [Formula: see text], [Formula: see text], via Gorenstein projective coresolutions, and give some equivalent characterizations for the finiteness of [Formula: see text]. Then over a general ring [Formula: see text] we define a co-Tate homology group [Formula: see text] for [Formula: see text]-modules [Formula: see text] and [Formula: see text] with [Formula: see text] and [Formula: see text], and prove that [Formula: see text] can be computed by complete projective coresolutions of the first variable or by complete projective resolutions of the second variable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gorenstein Projective Coresolutions and Co-Tate Homology Functors\",\"authors\":\"Zhongkui Liu, Li Wang\",\"doi\":\"10.1142/s1005386723000020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a local commutative Gorenstein ring [Formula: see text], Enochs et al. in [Gorenstein projective resolvents, Comm. Algebra 44 (2016) 3989–4000] defined a functor [Formula: see text] and showed that this functor can be computed by taking a totally acyclic complex arising from a projective coresolution of the first component or a totally acyclic complex arising from a projective resolution of the second component. In order to define the functor [Formula: see text] over general rings, we introduce the right Gorenstein projective dimension of an [Formula: see text]-module [Formula: see text], [Formula: see text], via Gorenstein projective coresolutions, and give some equivalent characterizations for the finiteness of [Formula: see text]. Then over a general ring [Formula: see text] we define a co-Tate homology group [Formula: see text] for [Formula: see text]-modules [Formula: see text] and [Formula: see text] with [Formula: see text] and [Formula: see text], and prove that [Formula: see text] can be computed by complete projective coresolutions of the first variable or by complete projective resolutions of the second variable.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于局部交换的Gorenstein环[公式:见文],Enochs等人在[Gorenstein射影解析,Comm. Algebra 44(2016) 3989-4000]中定义了一个函子[公式:见文],并表明该函子可以通过取由第一个分量的射影共分辨产生的全无环复合体或由第二个分量的射影共分辨产生的全无环复合体来计算。为了定义一般环上的函子[公式:见文],我们通过Gorenstein射影分辨引入了[公式:见文]-模[公式:见文],[公式:见文]的正确Gorenstein射影维数,并给出了[公式:见文]有限性的一些等价刻画。然后,在一个一般环上[公式:见文],我们为[公式:见文]-模[公式:见文]和[公式:见文]定义了一个具有[公式:见文]和[公式:见文]的共泰同调群[公式:见文],并证明了[公式:见文]可以通过第一个变量的完全射影分辨或第二个变量的完全射影分辨来计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Gorenstein Projective Coresolutions and Co-Tate Homology Functors
For a local commutative Gorenstein ring [Formula: see text], Enochs et al. in [Gorenstein projective resolvents, Comm. Algebra 44 (2016) 3989–4000] defined a functor [Formula: see text] and showed that this functor can be computed by taking a totally acyclic complex arising from a projective coresolution of the first component or a totally acyclic complex arising from a projective resolution of the second component. In order to define the functor [Formula: see text] over general rings, we introduce the right Gorenstein projective dimension of an [Formula: see text]-module [Formula: see text], [Formula: see text], via Gorenstein projective coresolutions, and give some equivalent characterizations for the finiteness of [Formula: see text]. Then over a general ring [Formula: see text] we define a co-Tate homology group [Formula: see text] for [Formula: see text]-modules [Formula: see text] and [Formula: see text] with [Formula: see text] and [Formula: see text], and prove that [Formula: see text] can be computed by complete projective coresolutions of the first variable or by complete projective resolutions of the second variable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信