{"title":"Gorenstein射影相和Co-Tate同调函子","authors":"Zhongkui Liu, Li Wang","doi":"10.1142/s1005386723000020","DOIUrl":null,"url":null,"abstract":"For a local commutative Gorenstein ring [Formula: see text], Enochs et al. in [Gorenstein projective resolvents, Comm. Algebra 44 (2016) 3989–4000] defined a functor [Formula: see text] and showed that this functor can be computed by taking a totally acyclic complex arising from a projective coresolution of the first component or a totally acyclic complex arising from a projective resolution of the second component. In order to define the functor [Formula: see text] over general rings, we introduce the right Gorenstein projective dimension of an [Formula: see text]-module [Formula: see text], [Formula: see text], via Gorenstein projective coresolutions, and give some equivalent characterizations for the finiteness of [Formula: see text]. Then over a general ring [Formula: see text] we define a co-Tate homology group [Formula: see text] for [Formula: see text]-modules [Formula: see text] and [Formula: see text] with [Formula: see text] and [Formula: see text], and prove that [Formula: see text] can be computed by complete projective coresolutions of the first variable or by complete projective resolutions of the second variable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gorenstein Projective Coresolutions and Co-Tate Homology Functors\",\"authors\":\"Zhongkui Liu, Li Wang\",\"doi\":\"10.1142/s1005386723000020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a local commutative Gorenstein ring [Formula: see text], Enochs et al. in [Gorenstein projective resolvents, Comm. Algebra 44 (2016) 3989–4000] defined a functor [Formula: see text] and showed that this functor can be computed by taking a totally acyclic complex arising from a projective coresolution of the first component or a totally acyclic complex arising from a projective resolution of the second component. In order to define the functor [Formula: see text] over general rings, we introduce the right Gorenstein projective dimension of an [Formula: see text]-module [Formula: see text], [Formula: see text], via Gorenstein projective coresolutions, and give some equivalent characterizations for the finiteness of [Formula: see text]. Then over a general ring [Formula: see text] we define a co-Tate homology group [Formula: see text] for [Formula: see text]-modules [Formula: see text] and [Formula: see text] with [Formula: see text] and [Formula: see text], and prove that [Formula: see text] can be computed by complete projective coresolutions of the first variable or by complete projective resolutions of the second variable.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gorenstein Projective Coresolutions and Co-Tate Homology Functors
For a local commutative Gorenstein ring [Formula: see text], Enochs et al. in [Gorenstein projective resolvents, Comm. Algebra 44 (2016) 3989–4000] defined a functor [Formula: see text] and showed that this functor can be computed by taking a totally acyclic complex arising from a projective coresolution of the first component or a totally acyclic complex arising from a projective resolution of the second component. In order to define the functor [Formula: see text] over general rings, we introduce the right Gorenstein projective dimension of an [Formula: see text]-module [Formula: see text], [Formula: see text], via Gorenstein projective coresolutions, and give some equivalent characterizations for the finiteness of [Formula: see text]. Then over a general ring [Formula: see text] we define a co-Tate homology group [Formula: see text] for [Formula: see text]-modules [Formula: see text] and [Formula: see text] with [Formula: see text] and [Formula: see text], and prove that [Formula: see text] can be computed by complete projective coresolutions of the first variable or by complete projective resolutions of the second variable.