超度量空间上的热核和非局部狄利克雷形式

IF 1.2 2区 数学 Q1 MATHEMATICS
A. Bendikov, Eryan Hu, Jiaxin Hu
{"title":"超度量空间上的热核和非局部狄利克雷形式","authors":"A. Bendikov, Eryan Hu, Jiaxin Hu","doi":"10.2422/2036-2145.201901_011","DOIUrl":null,"url":null,"abstract":"We consider a class of jump measures on ultrametric spaces and the associated non-local regular Dirichlet forms. We obtain equivalent conditions for certain heat kernel upper and lower estimates in terms of the properties of the jump measure. In particular, heat kernel estimates are given for quite degenerate/singular jump measures as shown in a number of examples.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"15 1","pages":"1"},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Heat kernels and non-local Dirichlet forms on ultrametric spaces\",\"authors\":\"A. Bendikov, Eryan Hu, Jiaxin Hu\",\"doi\":\"10.2422/2036-2145.201901_011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of jump measures on ultrametric spaces and the associated non-local regular Dirichlet forms. We obtain equivalent conditions for certain heat kernel upper and lower estimates in terms of the properties of the jump measure. In particular, heat kernel estimates are given for quite degenerate/singular jump measures as shown in a number of examples.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"15 1\",\"pages\":\"1\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.201901_011\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201901_011","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

摘要

研究了超度量空间上的一类跳跃测度及其非局部正则狄利克雷形式。根据跳跃测度的性质,得到了某些热核上估计和下估计的等价条件。特别地,热核估计给出了相当退化/奇异跳跃措施,如在许多例子中所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat kernels and non-local Dirichlet forms on ultrametric spaces
We consider a class of jump measures on ultrametric spaces and the associated non-local regular Dirichlet forms. We obtain equivalent conditions for certain heat kernel upper and lower estimates in terms of the properties of the jump measure. In particular, heat kernel estimates are given for quite degenerate/singular jump measures as shown in a number of examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信