对适当不可数子群有限制的群

IF 0.4 4区 数学 Q4 MATHEMATICS
F. Giovanni, M. Trombetti
{"title":"对适当不可数子群有限制的群","authors":"F. Giovanni, M. Trombetti","doi":"10.1556/012.2019.56.2.1427","DOIUrl":null,"url":null,"abstract":"\n A group G is called metahamiltonian if all its non-abelian subgroups are normal. The aim of this paper is to investigate the structure of uncountable groups of cardinality ℵ in which all proper subgroups of cardinality ℵ are metahamiltonian. It is proved that such a group is metahamiltonian, provided that it has no simple homomorphic images of cardinality ℵ. Furthermore, the behaviour of elements of finite order in uncountable groups is studied in the second part of the paper.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"29 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Groups with restrictions on proper uncountable subgroups\",\"authors\":\"F. Giovanni, M. Trombetti\",\"doi\":\"10.1556/012.2019.56.2.1427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A group G is called metahamiltonian if all its non-abelian subgroups are normal. The aim of this paper is to investigate the structure of uncountable groups of cardinality ℵ in which all proper subgroups of cardinality ℵ are metahamiltonian. It is proved that such a group is metahamiltonian, provided that it has no simple homomorphic images of cardinality ℵ. Furthermore, the behaviour of elements of finite order in uncountable groups is studied in the second part of the paper.\",\"PeriodicalId\":51187,\"journal\":{\"name\":\"Studia Scientiarum Mathematicarum Hungarica\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Scientiarum Mathematicarum Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2019.56.2.1427\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2019.56.2.1427","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

如果群G的所有非阿贝尔子群都是正规的,则群G称为元哈密顿群。本文的目的是研究不可数群的结构,其中所有的固有子群都是亚哈密顿的。证明了这样的群是亚哈密顿的,只要它没有基数的简单同态象。第二部分进一步研究了不可数群中有限阶元的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Groups with restrictions on proper uncountable subgroups
A group G is called metahamiltonian if all its non-abelian subgroups are normal. The aim of this paper is to investigate the structure of uncountable groups of cardinality ℵ in which all proper subgroups of cardinality ℵ are metahamiltonian. It is proved that such a group is metahamiltonian, provided that it has no simple homomorphic images of cardinality ℵ. Furthermore, the behaviour of elements of finite order in uncountable groups is studied in the second part of the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信