牵引机组循环仿真与优化

M. Rössler, Matthias Wastian, Anna Jellen, Sarah Frisch, Dominic Weinberger, P. Hungerländer, M. Bicher, N. Popper
{"title":"牵引机组循环仿真与优化","authors":"M. Rössler, Matthias Wastian, Anna Jellen, Sarah Frisch, Dominic Weinberger, P. Hungerländer, M. Bicher, N. Popper","doi":"10.1109/WSC48552.2020.9383926","DOIUrl":null,"url":null,"abstract":"The planning of traction unit circulations in a railway network is a very time-consuming task. In order to support the planning personnel, the paper proposes a combination of optimization, simulation and machine learning. This ensemble creates mathematically nearly optimal circulations that are also feasible in real operating procedures. An agent-based simulation model is developed that tests the circulation for its robustness against delays. The delays introduced into the system are based on predictions from a machine learning model built upon historical operational data. The paper first presents the used data and the delay prediction. Afterwards, the modeling and simulation part and the optimization are presented. At last, the interaction of simulation and optimization are described and promising results of a test case are shown.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"32 1","pages":"90-101"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation And Optimization Of Traction Unit Circulations\",\"authors\":\"M. Rössler, Matthias Wastian, Anna Jellen, Sarah Frisch, Dominic Weinberger, P. Hungerländer, M. Bicher, N. Popper\",\"doi\":\"10.1109/WSC48552.2020.9383926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The planning of traction unit circulations in a railway network is a very time-consuming task. In order to support the planning personnel, the paper proposes a combination of optimization, simulation and machine learning. This ensemble creates mathematically nearly optimal circulations that are also feasible in real operating procedures. An agent-based simulation model is developed that tests the circulation for its robustness against delays. The delays introduced into the system are based on predictions from a machine learning model built upon historical operational data. The paper first presents the used data and the delay prediction. Afterwards, the modeling and simulation part and the optimization are presented. At last, the interaction of simulation and optimization are described and promising results of a test case are shown.\",\"PeriodicalId\":6692,\"journal\":{\"name\":\"2020 Winter Simulation Conference (WSC)\",\"volume\":\"32 1\",\"pages\":\"90-101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC48552.2020.9383926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9383926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铁路网络中牵引机组的线路规划是一项非常耗时的工作。为了支持规划人员,本文提出了优化、仿真和机器学习相结合的方法。这种组合在数学上创造了近乎最佳的循环,在实际操作过程中也是可行的。建立了一种基于智能体的仿真模型,用于测试循环对延迟的鲁棒性。引入系统的延迟是基于基于历史操作数据的机器学习模型的预测。本文首先介绍了所使用的数据和延迟预测。然后,给出了建模仿真部分和优化部分。最后,描述了仿真与优化的相互作用,并给出了一个测试用例的良好结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation And Optimization Of Traction Unit Circulations
The planning of traction unit circulations in a railway network is a very time-consuming task. In order to support the planning personnel, the paper proposes a combination of optimization, simulation and machine learning. This ensemble creates mathematically nearly optimal circulations that are also feasible in real operating procedures. An agent-based simulation model is developed that tests the circulation for its robustness against delays. The delays introduced into the system are based on predictions from a machine learning model built upon historical operational data. The paper first presents the used data and the delay prediction. Afterwards, the modeling and simulation part and the optimization are presented. At last, the interaction of simulation and optimization are described and promising results of a test case are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信