{"title":"从面部表情和头部动作中自动识别复杂的分类情绪","authors":"Andra Adams, P. Robinson","doi":"10.1109/ACII.2015.7344595","DOIUrl":null,"url":null,"abstract":"Classifying complex categorical emotions has been a relatively unexplored area of affective computing. We present a classifier trained to recognize 18 complex emotion categories. A leave-one-out training approach was used on 181 acted videos from the EU-Emotion Stimulus Set. Performance scores for the 18-choice classification problem were AROC = 0.84, 2AFC = 0.84, F1 = 0.33, Accuracy = 0.47. On a simplified 6-choice classification problem, the classifier had an accuracy of 0.64 compared with the validated human accuracy of 0.74. The classifier has been integrated into an expression training interface which gives meaningful feedback to humans on their portrayal of complex emotions through face and head movements. This work has applications as an intervention for Autism Spectrum Conditions.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"29 1","pages":"355-361"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Automated recognition of complex categorical emotions from facial expressions and head motions\",\"authors\":\"Andra Adams, P. Robinson\",\"doi\":\"10.1109/ACII.2015.7344595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifying complex categorical emotions has been a relatively unexplored area of affective computing. We present a classifier trained to recognize 18 complex emotion categories. A leave-one-out training approach was used on 181 acted videos from the EU-Emotion Stimulus Set. Performance scores for the 18-choice classification problem were AROC = 0.84, 2AFC = 0.84, F1 = 0.33, Accuracy = 0.47. On a simplified 6-choice classification problem, the classifier had an accuracy of 0.64 compared with the validated human accuracy of 0.74. The classifier has been integrated into an expression training interface which gives meaningful feedback to humans on their portrayal of complex emotions through face and head movements. This work has applications as an intervention for Autism Spectrum Conditions.\",\"PeriodicalId\":6863,\"journal\":{\"name\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"volume\":\"29 1\",\"pages\":\"355-361\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACII.2015.7344595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
分类复杂的分类情绪一直是情感计算的一个相对未开发的领域。我们提出了一个分类器训练识别18个复杂的情绪类别。对欧盟情绪刺激集的181个动作视频采用了“留一”训练方法。18选项分类问题的性能得分为AROC = 0.84, 2AFC = 0.84, F1 = 0.33,准确率= 0.47。在一个简化的6选项分类问题上,该分类器的准确率为0.64,而经过验证的人类准确率为0.74。该分类器已集成到表情训练界面中,该界面通过面部和头部运动向人类提供有意义的反馈,以描述复杂的情绪。这项工作可以应用于自闭症谱系疾病的干预。
Automated recognition of complex categorical emotions from facial expressions and head motions
Classifying complex categorical emotions has been a relatively unexplored area of affective computing. We present a classifier trained to recognize 18 complex emotion categories. A leave-one-out training approach was used on 181 acted videos from the EU-Emotion Stimulus Set. Performance scores for the 18-choice classification problem were AROC = 0.84, 2AFC = 0.84, F1 = 0.33, Accuracy = 0.47. On a simplified 6-choice classification problem, the classifier had an accuracy of 0.64 compared with the validated human accuracy of 0.74. The classifier has been integrated into an expression training interface which gives meaningful feedback to humans on their portrayal of complex emotions through face and head movements. This work has applications as an intervention for Autism Spectrum Conditions.