在一个街区的正方形中重新审视汉密尔顿的主题:一般情况

IF 0.4 Q4 MATHEMATICS, APPLIED
H. Fleischner, G. Chia
{"title":"在一个街区的正方形中重新审视汉密尔顿的主题:一般情况","authors":"H. Fleischner, G. Chia","doi":"10.4310/JOC.2019.V10.N1.A7","DOIUrl":null,"url":null,"abstract":"This is the second part of joint research in which we show that every $2$-connected graph $G$ has the ${\\cal F}_4$ property. That is, given distinct $x_i\\in V(G)$, $1\\leq i\\leq 4$, there is an $x_1x_2$-hamiltonian path in $G^2$ containing different edges $x_3y_3, x_4y_4\\in E(G)$ for some $y_3,y_4\\in V(G)$. However, it was shown already in \\cite[Theorem 2]{cf1:refer} that 2-connected DT-graphs have the ${\\cal F}_4$ property; based on this result we generalize it to arbitrary $2$-connected graphs. We also show that these results are best possible.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"26 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Revisiting the Hamiltonian theme in the square of a block: the general case\",\"authors\":\"H. Fleischner, G. Chia\",\"doi\":\"10.4310/JOC.2019.V10.N1.A7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the second part of joint research in which we show that every $2$-connected graph $G$ has the ${\\\\cal F}_4$ property. That is, given distinct $x_i\\\\in V(G)$, $1\\\\leq i\\\\leq 4$, there is an $x_1x_2$-hamiltonian path in $G^2$ containing different edges $x_3y_3, x_4y_4\\\\in E(G)$ for some $y_3,y_4\\\\in V(G)$. However, it was shown already in \\\\cite[Theorem 2]{cf1:refer} that 2-connected DT-graphs have the ${\\\\cal F}_4$ property; based on this result we generalize it to arbitrary $2$-connected graphs. We also show that these results are best possible.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/JOC.2019.V10.N1.A7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/JOC.2019.V10.N1.A7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

这是联合研究的第二部分,我们证明了每个$2$连通图$G$都具有${\cal F}_4$属性。也就是说,给定不同的$x_i\in V(G)$, $1\leq i\leq 4$,在$G^2$中有一个$x_1x_2$ -哈密顿路径包含不同的边$x_3y_3, x_4y_4\in E(G)$对于某些$y_3,y_4\in V(G)$。然而,在\cite[Theorem 2]{cf1:refer}中已经表明,2连通的dt图具有${\cal F}_4$性质;在此基础上,我们将其推广到任意$2$连通图。我们也证明了这些结果是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the Hamiltonian theme in the square of a block: the general case
This is the second part of joint research in which we show that every $2$-connected graph $G$ has the ${\cal F}_4$ property. That is, given distinct $x_i\in V(G)$, $1\leq i\leq 4$, there is an $x_1x_2$-hamiltonian path in $G^2$ containing different edges $x_3y_3, x_4y_4\in E(G)$ for some $y_3,y_4\in V(G)$. However, it was shown already in \cite[Theorem 2]{cf1:refer} that 2-connected DT-graphs have the ${\cal F}_4$ property; based on this result we generalize it to arbitrary $2$-connected graphs. We also show that these results are best possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信