华沙证券交易所不精确的回报率

Krzysztof Piasecki
{"title":"华沙证券交易所不精确的回报率","authors":"Krzysztof Piasecki","doi":"10.2139/ssrn.2270138","DOIUrl":null,"url":null,"abstract":"The return rate in imprecision risk may be described as a fuzzy probabilistic set (Piasecki, 2011a). Properties of this return are considered in (Piasecki, 2011b) for any probability distribution of future value. On the other side, in (Piasecki, Tomasik, 2013) is shown that the Normal Inverse Gaussian distribution (NIG distribution) is the best matching probability distribution of logarithmic returns on Warsaw Stock Exchange. There will be presented the basic properties if imprecise return with NIG distribution of future value logarithm. The existence of expected return rate and basis risk characteristic will be discussed.","PeriodicalId":11800,"journal":{"name":"ERN: Stock Market Risk (Topic)","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Imprecise Return Rates on the Warsaw Stock Exchange\",\"authors\":\"Krzysztof Piasecki\",\"doi\":\"10.2139/ssrn.2270138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The return rate in imprecision risk may be described as a fuzzy probabilistic set (Piasecki, 2011a). Properties of this return are considered in (Piasecki, 2011b) for any probability distribution of future value. On the other side, in (Piasecki, Tomasik, 2013) is shown that the Normal Inverse Gaussian distribution (NIG distribution) is the best matching probability distribution of logarithmic returns on Warsaw Stock Exchange. There will be presented the basic properties if imprecise return with NIG distribution of future value logarithm. The existence of expected return rate and basis risk characteristic will be discussed.\",\"PeriodicalId\":11800,\"journal\":{\"name\":\"ERN: Stock Market Risk (Topic)\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Stock Market Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2270138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Stock Market Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2270138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

不精确风险的收益率可以描述为一个模糊概率集(Piasecki, 2011a)。对于未来价值的任何概率分布,(Piasecki, 2011b)都考虑了这种回报的性质。另一方面,在(Piasecki, Tomasik, 2013)中表明,正态反高斯分布(NIG分布)是华沙证券交易所对数收益的最佳匹配概率分布。用未来值对数的NIG分布给出不精确回归的基本性质。本文将讨论期望收益率和基风险特征的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imprecise Return Rates on the Warsaw Stock Exchange
The return rate in imprecision risk may be described as a fuzzy probabilistic set (Piasecki, 2011a). Properties of this return are considered in (Piasecki, 2011b) for any probability distribution of future value. On the other side, in (Piasecki, Tomasik, 2013) is shown that the Normal Inverse Gaussian distribution (NIG distribution) is the best matching probability distribution of logarithmic returns on Warsaw Stock Exchange. There will be presented the basic properties if imprecise return with NIG distribution of future value logarithm. The existence of expected return rate and basis risk characteristic will be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信