E. Hrushovski, J. Ouaknine, Amaury Pouly, J. Worrell
{"title":"关于最强代数规划不变量","authors":"E. Hrushovski, J. Ouaknine, Amaury Pouly, J. Worrell","doi":"10.1145/3614319","DOIUrl":null,"url":null,"abstract":"A polynomial program is one in which all assignments are given by polynomial expressions and in which all branching is nondeterministic (as opposed to conditional). Given such a program, an algebraic invariant is one that is defined by polynomial equations over the program variables at each program location. Müller-Olm and Seidl have posed the question of whether one can compute the strongest algebraic invariant of a given polynomial program. In this article, we show that, while strongest algebraic invariants are not computable in general, they can be computed in the special case of affine programs, that is, programs with exclusively linear assignments. For the latter result, our main tool is an algebraic result of independent interest: Given a finite set of rational square matrices of the same dimension, we show how to compute the Zariski closure of the semigroup that they generate.","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"8 1","pages":"1 - 22"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On Strongest Algebraic Program Invariants\",\"authors\":\"E. Hrushovski, J. Ouaknine, Amaury Pouly, J. Worrell\",\"doi\":\"10.1145/3614319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A polynomial program is one in which all assignments are given by polynomial expressions and in which all branching is nondeterministic (as opposed to conditional). Given such a program, an algebraic invariant is one that is defined by polynomial equations over the program variables at each program location. Müller-Olm and Seidl have posed the question of whether one can compute the strongest algebraic invariant of a given polynomial program. In this article, we show that, while strongest algebraic invariants are not computable in general, they can be computed in the special case of affine programs, that is, programs with exclusively linear assignments. For the latter result, our main tool is an algebraic result of independent interest: Given a finite set of rational square matrices of the same dimension, we show how to compute the Zariski closure of the semigroup that they generate.\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"8 1\",\"pages\":\"1 - 22\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3614319\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3614319","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A polynomial program is one in which all assignments are given by polynomial expressions and in which all branching is nondeterministic (as opposed to conditional). Given such a program, an algebraic invariant is one that is defined by polynomial equations over the program variables at each program location. Müller-Olm and Seidl have posed the question of whether one can compute the strongest algebraic invariant of a given polynomial program. In this article, we show that, while strongest algebraic invariants are not computable in general, they can be computed in the special case of affine programs, that is, programs with exclusively linear assignments. For the latter result, our main tool is an algebraic result of independent interest: Given a finite set of rational square matrices of the same dimension, we show how to compute the Zariski closure of the semigroup that they generate.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining