基于HMM的屈折语言命名实体识别

Nita Patil, A. Patil, B. Pawar
{"title":"基于HMM的屈折语言命名实体识别","authors":"Nita Patil, A. Patil, B. Pawar","doi":"10.1109/COMPTELIX.2017.8004034","DOIUrl":null,"url":null,"abstract":"Named Entity Recognition (NER) is the problem of identifying named entities in natural language text, classifying them into various classes and assigning the proper class tag to each word in its context. This paper describes a Named Entity Recognition system for Marathi using Hidden Markov Model (HMM). It addresses the problem of assigning the correct named entity class tag to each word using probabilistic model trained on a manually tagged corpus for the Marathi language. The most probable named entity tag is assigned to each word using the Viterbi algorithm. Proposed system reports an overall F1-score of 62.70% when no preprocessing was applied whereas it reports an overall F1-score of 77.79% when preprocessing was applied on the same data. Thus, the performance of the system is improved by 15% when linguistic knowledge is used to preprocess the test and training dataset.","PeriodicalId":6917,"journal":{"name":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","volume":"42 1","pages":"565-572"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"HMM based Named Entity Recognition for inflectional language\",\"authors\":\"Nita Patil, A. Patil, B. Pawar\",\"doi\":\"10.1109/COMPTELIX.2017.8004034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Named Entity Recognition (NER) is the problem of identifying named entities in natural language text, classifying them into various classes and assigning the proper class tag to each word in its context. This paper describes a Named Entity Recognition system for Marathi using Hidden Markov Model (HMM). It addresses the problem of assigning the correct named entity class tag to each word using probabilistic model trained on a manually tagged corpus for the Marathi language. The most probable named entity tag is assigned to each word using the Viterbi algorithm. Proposed system reports an overall F1-score of 62.70% when no preprocessing was applied whereas it reports an overall F1-score of 77.79% when preprocessing was applied on the same data. Thus, the performance of the system is improved by 15% when linguistic knowledge is used to preprocess the test and training dataset.\",\"PeriodicalId\":6917,\"journal\":{\"name\":\"2017 International Conference on Computer, Communications and Electronics (Comptelix)\",\"volume\":\"42 1\",\"pages\":\"565-572\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer, Communications and Electronics (Comptelix)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPTELIX.2017.8004034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPTELIX.2017.8004034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

命名实体识别(NER)是识别自然语言文本中的命名实体,将其分类为不同的类,并为其上下文中的每个词分配适当的类标记的问题。介绍了一种基于隐马尔可夫模型的马拉地语命名实体识别系统。它使用在手动标记的马拉地语语料库上训练的概率模型,解决了为每个词分配正确的命名实体类标记的问题。使用Viterbi算法将最可能的命名实体标签分配给每个单词。在未进行预处理的情况下,系统报告的f1总分为62.70%,而在对相同数据进行预处理的情况下,系统报告的f1总分为77.79%。因此,当使用语言知识对测试和训练数据集进行预处理时,系统的性能提高了15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HMM based Named Entity Recognition for inflectional language
Named Entity Recognition (NER) is the problem of identifying named entities in natural language text, classifying them into various classes and assigning the proper class tag to each word in its context. This paper describes a Named Entity Recognition system for Marathi using Hidden Markov Model (HMM). It addresses the problem of assigning the correct named entity class tag to each word using probabilistic model trained on a manually tagged corpus for the Marathi language. The most probable named entity tag is assigned to each word using the Viterbi algorithm. Proposed system reports an overall F1-score of 62.70% when no preprocessing was applied whereas it reports an overall F1-score of 77.79% when preprocessing was applied on the same data. Thus, the performance of the system is improved by 15% when linguistic knowledge is used to preprocess the test and training dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信