受控扩散过程的近似Q学习及其近最优性

IF 1.9 Q1 MATHEMATICS, APPLIED
Erhan Bayraktar, A. D. Kara
{"title":"受控扩散过程的近似Q学习及其近最优性","authors":"Erhan Bayraktar, A. D. Kara","doi":"10.1137/22m1484201","DOIUrl":null,"url":null,"abstract":"We study a Q learning algorithm for continuous time stochastic control problems. The proposed algorithm uses the sampled state process by discretizing the state and control action spaces under piece-wise constant control processes. We show that the algorithm converges to the optimality equation of a finite Markov decision process (MDP). Using this MDP model, we provide an upper bound for the approximation error for the optimal value function of the continuous time control problem. Furthermore, we present provable upper-bounds for the performance loss of the learned control process compared to the optimal admissible control process of the original problem. The provided error upper-bounds are functions of the time and space discretization parameters, and they reveal the effect of different levels of the approximation: (i) approximation of the continuous time control problem by an MDP, (ii) use of piece-wise constant control processes, (iii) space discretization. Finally, we state a time complexity bound for the proposed algorithm as a function of the time and space discretization parameters.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"91 1","pages":"615-638"},"PeriodicalIF":1.9000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Approximate Q Learning for Controlled Diffusion Processes and Its Near Optimality\",\"authors\":\"Erhan Bayraktar, A. D. Kara\",\"doi\":\"10.1137/22m1484201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a Q learning algorithm for continuous time stochastic control problems. The proposed algorithm uses the sampled state process by discretizing the state and control action spaces under piece-wise constant control processes. We show that the algorithm converges to the optimality equation of a finite Markov decision process (MDP). Using this MDP model, we provide an upper bound for the approximation error for the optimal value function of the continuous time control problem. Furthermore, we present provable upper-bounds for the performance loss of the learned control process compared to the optimal admissible control process of the original problem. The provided error upper-bounds are functions of the time and space discretization parameters, and they reveal the effect of different levels of the approximation: (i) approximation of the continuous time control problem by an MDP, (ii) use of piece-wise constant control processes, (iii) space discretization. Finally, we state a time complexity bound for the proposed algorithm as a function of the time and space discretization parameters.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"91 1\",\"pages\":\"615-638\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1484201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1484201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

研究了连续时间随机控制问题的Q学习算法。该算法通过离散分段恒定控制过程下的状态和控制动作空间,利用采样状态过程。我们证明了该算法收敛于有限马尔可夫决策过程的最优性方程。利用该MDP模型,给出了连续时间控制问题的最优值函数的逼近误差的上界。此外,我们给出了与原问题的最优允许控制过程相比,学习控制过程性能损失的可证明上界。所提供的误差上界是时间和空间离散化参数的函数,它们揭示了不同近似水平的影响:(i)用MDP逼近连续时间控制问题,(ii)使用分段常量控制过程,(iii)空间离散化。最后,我们将所提出的算法的时间复杂度限定为时间和空间离散化参数的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Q Learning for Controlled Diffusion Processes and Its Near Optimality
We study a Q learning algorithm for continuous time stochastic control problems. The proposed algorithm uses the sampled state process by discretizing the state and control action spaces under piece-wise constant control processes. We show that the algorithm converges to the optimality equation of a finite Markov decision process (MDP). Using this MDP model, we provide an upper bound for the approximation error for the optimal value function of the continuous time control problem. Furthermore, we present provable upper-bounds for the performance loss of the learned control process compared to the optimal admissible control process of the original problem. The provided error upper-bounds are functions of the time and space discretization parameters, and they reveal the effect of different levels of the approximation: (i) approximation of the continuous time control problem by an MDP, (ii) use of piece-wise constant control processes, (iii) space discretization. Finally, we state a time complexity bound for the proposed algorithm as a function of the time and space discretization parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信