格林-久保方法在计算机模拟中计算受限液体导热系数的适用性的局限性

Krzysztof Hyżorek, K. V. Tretiakov
{"title":"格林-久保方法在计算机模拟中计算受限液体导热系数的适用性的局限性","authors":"Krzysztof Hyżorek, K. V. Tretiakov","doi":"10.12921/CMST.2016.0000054","DOIUrl":null,"url":null,"abstract":"Thermal conductivity (λ) of the Lennard-Jones liquid in cylindrical nanochannels has been determined using the Green-Kubo (GK) approach in equilibrium Molecular Dynamics simulations. Good convergence of λ(τ) has been observed along the nanochannel’s axis where the periodic boundary conditions are applied. However, it has been found that the estimation of limiting value of λ(τ) in the transverse direction, where walls confine the liquid, is ambiguous.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"1 1","pages":"197-200"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Limitations of Applicability of the Green-Kubo Approach for Calculating the Thermal Conductivity of a Confined Liquid in Computer Simulations\",\"authors\":\"Krzysztof Hyżorek, K. V. Tretiakov\",\"doi\":\"10.12921/CMST.2016.0000054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal conductivity (λ) of the Lennard-Jones liquid in cylindrical nanochannels has been determined using the Green-Kubo (GK) approach in equilibrium Molecular Dynamics simulations. Good convergence of λ(τ) has been observed along the nanochannel’s axis where the periodic boundary conditions are applied. However, it has been found that the estimation of limiting value of λ(τ) in the transverse direction, where walls confine the liquid, is ambiguous.\",\"PeriodicalId\":10561,\"journal\":{\"name\":\"computational methods in science and technology\",\"volume\":\"1 1\",\"pages\":\"197-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"computational methods in science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12921/CMST.2016.0000054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/CMST.2016.0000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用平衡分子动力学模拟中的Green-Kubo (GK)方法确定了圆柱形纳米通道中Lennard-Jones液体的热导率(λ)。在应用周期边界条件的纳米通道轴线上观察到λ(τ)的良好收敛。然而,已经发现,λ(τ)在横向上的极限值的估计,其中壁限制液体,是模糊的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limitations of Applicability of the Green-Kubo Approach for Calculating the Thermal Conductivity of a Confined Liquid in Computer Simulations
Thermal conductivity (λ) of the Lennard-Jones liquid in cylindrical nanochannels has been determined using the Green-Kubo (GK) approach in equilibrium Molecular Dynamics simulations. Good convergence of λ(τ) has been observed along the nanochannel’s axis where the periodic boundary conditions are applied. However, it has been found that the estimation of limiting value of λ(τ) in the transverse direction, where walls confine the liquid, is ambiguous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信