红外睑板腺图像中腺体的自动分割

Zhiming Lin, Jiawen Lin, Li Li
{"title":"红外睑板腺图像中腺体的自动分割","authors":"Zhiming Lin, Jiawen Lin, Li Li","doi":"10.1109/ITME53901.2021.00086","DOIUrl":null,"url":null,"abstract":"Meibomian gland dysfunction (MGD) is the most common cause of dry eye disease. Ophthalmologists conduct qualitative evaluation of meibomian glands(MGs) of patients by observing infrared meibomian gland images. But it is subjective to make a diagnosis only with the naked eye. Automatic segmentation of MGs could be challenging and play a key role in MGD morphology analysis and diagnosis. In this paper, an automatic gland segmentation method based on UNet++ and a meibography image dataset are proposed. Data augmentation is used to expand training samples. Infrared meibomian gland images are fed into the preserved model for accurate segmentation. The experiments including comparison with the latest methods show that the presented method effectively segment the MGs and outperform other methods with an average accuracy of 94.28%.","PeriodicalId":6774,"journal":{"name":"2021 11th International Conference on Information Technology in Medicine and Education (ITME)","volume":"128 1","pages":"399-403"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic segmentation of glands in infrared meibomian gland image\",\"authors\":\"Zhiming Lin, Jiawen Lin, Li Li\",\"doi\":\"10.1109/ITME53901.2021.00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meibomian gland dysfunction (MGD) is the most common cause of dry eye disease. Ophthalmologists conduct qualitative evaluation of meibomian glands(MGs) of patients by observing infrared meibomian gland images. But it is subjective to make a diagnosis only with the naked eye. Automatic segmentation of MGs could be challenging and play a key role in MGD morphology analysis and diagnosis. In this paper, an automatic gland segmentation method based on UNet++ and a meibography image dataset are proposed. Data augmentation is used to expand training samples. Infrared meibomian gland images are fed into the preserved model for accurate segmentation. The experiments including comparison with the latest methods show that the presented method effectively segment the MGs and outperform other methods with an average accuracy of 94.28%.\",\"PeriodicalId\":6774,\"journal\":{\"name\":\"2021 11th International Conference on Information Technology in Medicine and Education (ITME)\",\"volume\":\"128 1\",\"pages\":\"399-403\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Information Technology in Medicine and Education (ITME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITME53901.2021.00086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Technology in Medicine and Education (ITME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITME53901.2021.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

睑板腺功能障碍(MGD)是干眼病最常见的原因。眼科医生通过观察睑板腺的红外图像,对患者的睑板腺进行定性评价。但仅凭肉眼作出诊断是主观的。MGD的自动分割在MGD的形态学分析和诊断中起着关键的作用。本文提出了一种基于unet++的腺体自动分割方法,并结合meibography图像数据集进行了研究。数据增强用于扩展训练样本。将红外睑板腺图像输入到保留模型中进行精确分割。实验结果表明,该方法能有效地分割图像,平均分割准确率达94.28%,优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic segmentation of glands in infrared meibomian gland image
Meibomian gland dysfunction (MGD) is the most common cause of dry eye disease. Ophthalmologists conduct qualitative evaluation of meibomian glands(MGs) of patients by observing infrared meibomian gland images. But it is subjective to make a diagnosis only with the naked eye. Automatic segmentation of MGs could be challenging and play a key role in MGD morphology analysis and diagnosis. In this paper, an automatic gland segmentation method based on UNet++ and a meibography image dataset are proposed. Data augmentation is used to expand training samples. Infrared meibomian gland images are fed into the preserved model for accurate segmentation. The experiments including comparison with the latest methods show that the presented method effectively segment the MGs and outperform other methods with an average accuracy of 94.28%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信