{"title":"粗糙核积分算子的加权不等式","authors":"M. S. Riveros, M. Urciuolo","doi":"10.2478/s11533-013-0362-1","DOIUrl":null,"url":null,"abstract":"AbstractIn this paper we study integral operators with kernels $$K(x,y) = k_1 (x - A_1 y) \\cdots k_m \\left( {x - A_m y} \\right),$$$$k_i \\left( x \\right) = {{\\Omega _i \\left( x \\right)} \\mathord{\\left/\n {\\vphantom {{\\Omega _i \\left( x \\right)} {\\left| x \\right|}}} \\right.\n \\kern-\\nulldelimiterspace} {\\left| x \\right|}}^{{n \\mathord{\\left/\n {\\vphantom {n {q_i }}} \\right.\n \\kern-\\nulldelimiterspace} {q_i }}}$$ where Ωi: ℝn → ℝ are homogeneous functions of degree zero, satisfying a size and a Dini condition, Ai are certain invertible matrices, and n/q1 +…+n/qm = n−α, 0 ≤ α < n. We obtain the appropriate weighted Lp-Lq estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give a Coifman type estimate for these operators.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"116 1","pages":"636-647"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Weighted inequalities for some integral operators with rough kernels\",\"authors\":\"M. S. Riveros, M. Urciuolo\",\"doi\":\"10.2478/s11533-013-0362-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn this paper we study integral operators with kernels $$K(x,y) = k_1 (x - A_1 y) \\\\cdots k_m \\\\left( {x - A_m y} \\\\right),$$$$k_i \\\\left( x \\\\right) = {{\\\\Omega _i \\\\left( x \\\\right)} \\\\mathord{\\\\left/\\n {\\\\vphantom {{\\\\Omega _i \\\\left( x \\\\right)} {\\\\left| x \\\\right|}}} \\\\right.\\n \\\\kern-\\\\nulldelimiterspace} {\\\\left| x \\\\right|}}^{{n \\\\mathord{\\\\left/\\n {\\\\vphantom {n {q_i }}} \\\\right.\\n \\\\kern-\\\\nulldelimiterspace} {q_i }}}$$ where Ωi: ℝn → ℝ are homogeneous functions of degree zero, satisfying a size and a Dini condition, Ai are certain invertible matrices, and n/q1 +…+n/qm = n−α, 0 ≤ α < n. We obtain the appropriate weighted Lp-Lq estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give a Coifman type estimate for these operators.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"116 1\",\"pages\":\"636-647\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0362-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0362-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weighted inequalities for some integral operators with rough kernels
AbstractIn this paper we study integral operators with kernels $$K(x,y) = k_1 (x - A_1 y) \cdots k_m \left( {x - A_m y} \right),$$$$k_i \left( x \right) = {{\Omega _i \left( x \right)} \mathord{\left/
{\vphantom {{\Omega _i \left( x \right)} {\left| x \right|}}} \right.
\kern-\nulldelimiterspace} {\left| x \right|}}^{{n \mathord{\left/
{\vphantom {n {q_i }}} \right.
\kern-\nulldelimiterspace} {q_i }}}$$ where Ωi: ℝn → ℝ are homogeneous functions of degree zero, satisfying a size and a Dini condition, Ai are certain invertible matrices, and n/q1 +…+n/qm = n−α, 0 ≤ α < n. We obtain the appropriate weighted Lp-Lq estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give a Coifman type estimate for these operators.