R. D. Mota, D. Ojeda-Guill'en, M. Salazar-Ram'irez, V. Granados
{"title":"二维Dunkl-Klein-Gordon方程的精确解:库仑势和Klein-Gordon振子","authors":"R. D. Mota, D. Ojeda-Guill'en, M. Salazar-Ram'irez, V. Granados","doi":"10.1142/S0217732321501716","DOIUrl":null,"url":null,"abstract":"In this paper, we begin from the Klein-Gordon ($KG$) equation in $2D$ and change the standard partial derivatives by the Dunkl derivatives to obtain the Dunkl-Klein-Gordon ($DKG$) equation. We show that the generalization with Dunkl derivative of the $z$-component of the angular momentum is what allows the separation of variables of the $DKG$ equation. Then, we show that $DKG$ equations for the $2D$ Coulomb potential and the Klein-Gordon oscillator are exactly solvable. For each of the problems, we find the energy spectrum from an algebraic point of view by introducing suitable sets of operators which close the $su(1,1)$ algebra and use the unitary theory of representations. Also, we find analytically the energy spectrum and eigenfunctions of the $DKG$ equations for both problems. Finally, we show that when the parameters of the Dunkl derivative vanish, our results are suitably reduced to those reported in the literature for these $2D$ problems.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exact solutions of the 2D Dunkl–Klein–Gordon equation: The Coulomb potential and the Klein–Gordon oscillator\",\"authors\":\"R. D. Mota, D. Ojeda-Guill'en, M. Salazar-Ram'irez, V. Granados\",\"doi\":\"10.1142/S0217732321501716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we begin from the Klein-Gordon ($KG$) equation in $2D$ and change the standard partial derivatives by the Dunkl derivatives to obtain the Dunkl-Klein-Gordon ($DKG$) equation. We show that the generalization with Dunkl derivative of the $z$-component of the angular momentum is what allows the separation of variables of the $DKG$ equation. Then, we show that $DKG$ equations for the $2D$ Coulomb potential and the Klein-Gordon oscillator are exactly solvable. For each of the problems, we find the energy spectrum from an algebraic point of view by introducing suitable sets of operators which close the $su(1,1)$ algebra and use the unitary theory of representations. Also, we find analytically the energy spectrum and eigenfunctions of the $DKG$ equations for both problems. Finally, we show that when the parameters of the Dunkl derivative vanish, our results are suitably reduced to those reported in the literature for these $2D$ problems.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217732321501716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217732321501716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exact solutions of the 2D Dunkl–Klein–Gordon equation: The Coulomb potential and the Klein–Gordon oscillator
In this paper, we begin from the Klein-Gordon ($KG$) equation in $2D$ and change the standard partial derivatives by the Dunkl derivatives to obtain the Dunkl-Klein-Gordon ($DKG$) equation. We show that the generalization with Dunkl derivative of the $z$-component of the angular momentum is what allows the separation of variables of the $DKG$ equation. Then, we show that $DKG$ equations for the $2D$ Coulomb potential and the Klein-Gordon oscillator are exactly solvable. For each of the problems, we find the energy spectrum from an algebraic point of view by introducing suitable sets of operators which close the $su(1,1)$ algebra and use the unitary theory of representations. Also, we find analytically the energy spectrum and eigenfunctions of the $DKG$ equations for both problems. Finally, we show that when the parameters of the Dunkl derivative vanish, our results are suitably reduced to those reported in the literature for these $2D$ problems.