Milena Vasconcellos Oliveira, Pedro Leme Silva, Patricia Rieken Macedo Rocco
{"title":"实验性肺气肿和变应性哮喘小鼠株间细胞外基质成分重构和肺功能参数的差异","authors":"Milena Vasconcellos Oliveira, Pedro Leme Silva, Patricia Rieken Macedo Rocco","doi":"10.1016/j.ddmod.2019.04.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Mice are frequently used in experimental models of respiratory diseases due to their ease of manipulation, genetic homogeneity within inbred populations, and possibility of standardizing environmental exposures. However, it is well established that genetic strain variations in mice may exist, which imply changes in extracellular matrix (ECM) composition and degree of ECM remodeling, with potential for major impacts on </span>respiratory mechanics<span><span>. The lung ECM is mainly composed of fibrous proteins (collagen and elastin), </span>glycoproteins<span> (fibronectin and laminin), proteoglycans (PGs), and </span></span></span>glycosaminoglycans<span><span> (GAGs). The functions of many ECM components are well described, but their role in the pathogenesis of respiratory diseases, such as emphysema and asthma, requires further elucidation. The aim of this review is to address ECM composition, function, and remodeling as well as demonstrate its relationship with the mechanical profile of the lung in different strains of mice subjected to </span>experimental emphysema<span> and allergic asthma.</span></span></p></div>","PeriodicalId":39774,"journal":{"name":"Drug Discovery Today: Disease Models","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddmod.2019.04.001","citationCount":"1","resultStr":"{\"title\":\"Extracellular matrix components remodeling and lung function parameters in experimental emphysema and allergic asthma: Differences among the mouse strains\",\"authors\":\"Milena Vasconcellos Oliveira, Pedro Leme Silva, Patricia Rieken Macedo Rocco\",\"doi\":\"10.1016/j.ddmod.2019.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Mice are frequently used in experimental models of respiratory diseases due to their ease of manipulation, genetic homogeneity within inbred populations, and possibility of standardizing environmental exposures. However, it is well established that genetic strain variations in mice may exist, which imply changes in extracellular matrix (ECM) composition and degree of ECM remodeling, with potential for major impacts on </span>respiratory mechanics<span><span>. The lung ECM is mainly composed of fibrous proteins (collagen and elastin), </span>glycoproteins<span> (fibronectin and laminin), proteoglycans (PGs), and </span></span></span>glycosaminoglycans<span><span> (GAGs). The functions of many ECM components are well described, but their role in the pathogenesis of respiratory diseases, such as emphysema and asthma, requires further elucidation. The aim of this review is to address ECM composition, function, and remodeling as well as demonstrate its relationship with the mechanical profile of the lung in different strains of mice subjected to </span>experimental emphysema<span> and allergic asthma.</span></span></p></div>\",\"PeriodicalId\":39774,\"journal\":{\"name\":\"Drug Discovery Today: Disease Models\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddmod.2019.04.001\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Disease Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740675718300306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Disease Models","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740675718300306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Extracellular matrix components remodeling and lung function parameters in experimental emphysema and allergic asthma: Differences among the mouse strains
Mice are frequently used in experimental models of respiratory diseases due to their ease of manipulation, genetic homogeneity within inbred populations, and possibility of standardizing environmental exposures. However, it is well established that genetic strain variations in mice may exist, which imply changes in extracellular matrix (ECM) composition and degree of ECM remodeling, with potential for major impacts on respiratory mechanics. The lung ECM is mainly composed of fibrous proteins (collagen and elastin), glycoproteins (fibronectin and laminin), proteoglycans (PGs), and glycosaminoglycans (GAGs). The functions of many ECM components are well described, but their role in the pathogenesis of respiratory diseases, such as emphysema and asthma, requires further elucidation. The aim of this review is to address ECM composition, function, and remodeling as well as demonstrate its relationship with the mechanical profile of the lung in different strains of mice subjected to experimental emphysema and allergic asthma.
期刊介绍:
Drug Discovery Today: Disease Models discusses the non-human experimental models through which inference is drawn regarding the molecular aetiology and pathogenesis of human disease. It provides critical analysis and evaluation of which models can genuinely inform the research community about the direct process of human disease, those which may have value in basic toxicology, and those which are simply designed for effective expression and raw characterisation.