Sana Imtiaz, P. Matthies, Francisco Pinto, M. Maros, H. Wenz, R. Sadre, Vladimir Vlassov
{"title":"PyDPLib:用于私人医疗数据分析的Python差分隐私库","authors":"Sana Imtiaz, P. Matthies, Francisco Pinto, M. Maros, H. Wenz, R. Sadre, Vladimir Vlassov","doi":"10.1109/icdh52753.2021.00034","DOIUrl":null,"url":null,"abstract":"Pharmaceutical and medical technology companies accessing real-world medical data are not interested in personally identifiable data but rather in cohort data such as statistical aggregates, patterns, and trends. These companies cooperate with medical institutions that collect medical data and want to share it but they need to protect the privacy of individuals on the shared data. We present PyDPLib, a Python Differential Privacy library for private medical data analytics. We illustrate an application of differential privacy using PyDPLib in our platform for visualizing private statistics on a database of prostate cancer patients. Our experimental results show that PyDPLib allows creating statistical data plots without compromising patients’ privacy while preserving underlying data distributions. Even though PyDPLib has been developed to be used in our platform for reporting the radiological examinations and procedures, it is general enough to be used to provide differential privacy on data in any data analytics and visualization platform, service or application.","PeriodicalId":93401,"journal":{"name":"2021 IEEE International Conference on Digital Health (ICDH)","volume":"366 1","pages":"191-196"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PyDPLib: Python Differential Privacy Library for Private Medical Data Analytics\",\"authors\":\"Sana Imtiaz, P. Matthies, Francisco Pinto, M. Maros, H. Wenz, R. Sadre, Vladimir Vlassov\",\"doi\":\"10.1109/icdh52753.2021.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pharmaceutical and medical technology companies accessing real-world medical data are not interested in personally identifiable data but rather in cohort data such as statistical aggregates, patterns, and trends. These companies cooperate with medical institutions that collect medical data and want to share it but they need to protect the privacy of individuals on the shared data. We present PyDPLib, a Python Differential Privacy library for private medical data analytics. We illustrate an application of differential privacy using PyDPLib in our platform for visualizing private statistics on a database of prostate cancer patients. Our experimental results show that PyDPLib allows creating statistical data plots without compromising patients’ privacy while preserving underlying data distributions. Even though PyDPLib has been developed to be used in our platform for reporting the radiological examinations and procedures, it is general enough to be used to provide differential privacy on data in any data analytics and visualization platform, service or application.\",\"PeriodicalId\":93401,\"journal\":{\"name\":\"2021 IEEE International Conference on Digital Health (ICDH)\",\"volume\":\"366 1\",\"pages\":\"191-196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Digital Health (ICDH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icdh52753.2021.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Digital Health (ICDH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdh52753.2021.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PyDPLib: Python Differential Privacy Library for Private Medical Data Analytics
Pharmaceutical and medical technology companies accessing real-world medical data are not interested in personally identifiable data but rather in cohort data such as statistical aggregates, patterns, and trends. These companies cooperate with medical institutions that collect medical data and want to share it but they need to protect the privacy of individuals on the shared data. We present PyDPLib, a Python Differential Privacy library for private medical data analytics. We illustrate an application of differential privacy using PyDPLib in our platform for visualizing private statistics on a database of prostate cancer patients. Our experimental results show that PyDPLib allows creating statistical data plots without compromising patients’ privacy while preserving underlying data distributions. Even though PyDPLib has been developed to be used in our platform for reporting the radiological examinations and procedures, it is general enough to be used to provide differential privacy on data in any data analytics and visualization platform, service or application.