PyDPLib:用于私人医疗数据分析的Python差分隐私库

Sana Imtiaz, P. Matthies, Francisco Pinto, M. Maros, H. Wenz, R. Sadre, Vladimir Vlassov
{"title":"PyDPLib:用于私人医疗数据分析的Python差分隐私库","authors":"Sana Imtiaz, P. Matthies, Francisco Pinto, M. Maros, H. Wenz, R. Sadre, Vladimir Vlassov","doi":"10.1109/icdh52753.2021.00034","DOIUrl":null,"url":null,"abstract":"Pharmaceutical and medical technology companies accessing real-world medical data are not interested in personally identifiable data but rather in cohort data such as statistical aggregates, patterns, and trends. These companies cooperate with medical institutions that collect medical data and want to share it but they need to protect the privacy of individuals on the shared data. We present PyDPLib, a Python Differential Privacy library for private medical data analytics. We illustrate an application of differential privacy using PyDPLib in our platform for visualizing private statistics on a database of prostate cancer patients. Our experimental results show that PyDPLib allows creating statistical data plots without compromising patients’ privacy while preserving underlying data distributions. Even though PyDPLib has been developed to be used in our platform for reporting the radiological examinations and procedures, it is general enough to be used to provide differential privacy on data in any data analytics and visualization platform, service or application.","PeriodicalId":93401,"journal":{"name":"2021 IEEE International Conference on Digital Health (ICDH)","volume":"366 1","pages":"191-196"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PyDPLib: Python Differential Privacy Library for Private Medical Data Analytics\",\"authors\":\"Sana Imtiaz, P. Matthies, Francisco Pinto, M. Maros, H. Wenz, R. Sadre, Vladimir Vlassov\",\"doi\":\"10.1109/icdh52753.2021.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pharmaceutical and medical technology companies accessing real-world medical data are not interested in personally identifiable data but rather in cohort data such as statistical aggregates, patterns, and trends. These companies cooperate with medical institutions that collect medical data and want to share it but they need to protect the privacy of individuals on the shared data. We present PyDPLib, a Python Differential Privacy library for private medical data analytics. We illustrate an application of differential privacy using PyDPLib in our platform for visualizing private statistics on a database of prostate cancer patients. Our experimental results show that PyDPLib allows creating statistical data plots without compromising patients’ privacy while preserving underlying data distributions. Even though PyDPLib has been developed to be used in our platform for reporting the radiological examinations and procedures, it is general enough to be used to provide differential privacy on data in any data analytics and visualization platform, service or application.\",\"PeriodicalId\":93401,\"journal\":{\"name\":\"2021 IEEE International Conference on Digital Health (ICDH)\",\"volume\":\"366 1\",\"pages\":\"191-196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Digital Health (ICDH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icdh52753.2021.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Digital Health (ICDH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdh52753.2021.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

访问现实世界医疗数据的制药和医疗技术公司对个人身份数据不感兴趣,而是对统计汇总、模式和趋势等队列数据感兴趣。这些公司与医疗机构合作,这些医疗机构收集医疗数据并希望共享这些数据,但他们需要保护共享数据上的个人隐私。我们介绍PyDPLib,一个用于私人医疗数据分析的Python差分隐私库。我们在我们的平台上使用PyDPLib演示了差分隐私的应用,用于在前列腺癌患者数据库上可视化私人统计数据。我们的实验结果表明,PyDPLib允许在不损害患者隐私的情况下创建统计数据图,同时保留底层数据分布。尽管PyDPLib已被开发用于我们的平台,用于报告放射检查和程序,但它足以在任何数据分析和可视化平台,服务或应用程序中用于提供数据的差异隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PyDPLib: Python Differential Privacy Library for Private Medical Data Analytics
Pharmaceutical and medical technology companies accessing real-world medical data are not interested in personally identifiable data but rather in cohort data such as statistical aggregates, patterns, and trends. These companies cooperate with medical institutions that collect medical data and want to share it but they need to protect the privacy of individuals on the shared data. We present PyDPLib, a Python Differential Privacy library for private medical data analytics. We illustrate an application of differential privacy using PyDPLib in our platform for visualizing private statistics on a database of prostate cancer patients. Our experimental results show that PyDPLib allows creating statistical data plots without compromising patients’ privacy while preserving underlying data distributions. Even though PyDPLib has been developed to be used in our platform for reporting the radiological examinations and procedures, it is general enough to be used to provide differential privacy on data in any data analytics and visualization platform, service or application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信