{"title":"算子的次加性不等式","authors":"H. Moradi, Z. Heydarbeygi, M. Sababheh","doi":"10.7153/mia-2020-23-24","DOIUrl":null,"url":null,"abstract":"In this article, we present a new subadditivity behavior of convex and concave functions, when applied to Hilbert space operators. For example, under suitable assumptions on the spectrum of the positive operators $A$ and $B$, we prove that \\[{{2}^{1-r}}{{\\left( A+B \\right)}^{r}}\\le {{A}^{r}}+{{B}^{r}}\\quad\\text{ for }r>1\\text{ and }r<0,\\] and \\[{{A}^{r}}+{{B}^{r}}\\le {{2}^{1-r}}{{\\left( A+B \\right)}^{r}}\\quad\\text{ for }r\\in \\left[ 0,1 \\right].\\] These results provide considerable generalization of earlier results by Aujla and Silva. \nFurther, we present several extensions of the subadditivity idea initiated by Ando and Zhan, then extended by Bourin and Uchiyama.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Subadditive inequalities for operators\",\"authors\":\"H. Moradi, Z. Heydarbeygi, M. Sababheh\",\"doi\":\"10.7153/mia-2020-23-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a new subadditivity behavior of convex and concave functions, when applied to Hilbert space operators. For example, under suitable assumptions on the spectrum of the positive operators $A$ and $B$, we prove that \\\\[{{2}^{1-r}}{{\\\\left( A+B \\\\right)}^{r}}\\\\le {{A}^{r}}+{{B}^{r}}\\\\quad\\\\text{ for }r>1\\\\text{ and }r<0,\\\\] and \\\\[{{A}^{r}}+{{B}^{r}}\\\\le {{2}^{1-r}}{{\\\\left( A+B \\\\right)}^{r}}\\\\quad\\\\text{ for }r\\\\in \\\\left[ 0,1 \\\\right].\\\\] These results provide considerable generalization of earlier results by Aujla and Silva. \\nFurther, we present several extensions of the subadditivity idea initiated by Ando and Zhan, then extended by Bourin and Uchiyama.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/mia-2020-23-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/mia-2020-23-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
本文在Hilbert空间算子上,给出了凸、凹函数的一个新的次可加性。例如,在对正算子$A$和$B$的谱的适当假设下,我们证明了\[{{2}^{1-r}}{{\left( A+B \right)}^{r}}\le {{A}^{r}}+{{B}^{r}}\quad\text{ for }r>1\text{ and }r<0,\]和\[{{A}^{r}}+{{B}^{r}}\le {{2}^{1-r}}{{\left( A+B \right)}^{r}}\quad\text{ for }r\in \left[ 0,1 \right].\]。这些结果对Aujla和Silva先前的结果提供了相当大的推广。此外,我们提出了由Ando和Zhan提出的子可加性思想的几个扩展,然后由Bourin和Uchiyama扩展。
In this article, we present a new subadditivity behavior of convex and concave functions, when applied to Hilbert space operators. For example, under suitable assumptions on the spectrum of the positive operators $A$ and $B$, we prove that \[{{2}^{1-r}}{{\left( A+B \right)}^{r}}\le {{A}^{r}}+{{B}^{r}}\quad\text{ for }r>1\text{ and }r<0,\] and \[{{A}^{r}}+{{B}^{r}}\le {{2}^{1-r}}{{\left( A+B \right)}^{r}}\quad\text{ for }r\in \left[ 0,1 \right].\] These results provide considerable generalization of earlier results by Aujla and Silva.
Further, we present several extensions of the subadditivity idea initiated by Ando and Zhan, then extended by Bourin and Uchiyama.