基于Image-Pro Plus的冻融循环下粉煤灰混凝土碳化规律研究

IF 0.6 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jingguo Yuan, Bo Zhao, Zhenqiang Wang, Yan Liu
{"title":"基于Image-Pro Plus的冻融循环下粉煤灰混凝土碳化规律研究","authors":"Jingguo Yuan, Bo Zhao, Zhenqiang Wang, Yan Liu","doi":"10.18280/acsm.440604","DOIUrl":null,"url":null,"abstract":"To understand the influence of freeze-thaw on the carbonization performance of concrete in severe cold areas, this paper conducted experiments to explore the carbonization law of fly ash concrete under freeze-thaw cycles. First, carbonization tests were conducted under different freeze-thaw cycles and fly ash contents; then PS (Photoshop) and IPP (Image-Pro Plus) were adopted to measure the carbonized area and calculate the ratio of carbonized area (RCA). The experimental results showed that, when the fly ash content was between 10% and 30%, RCA increased slowly; when the fly ash content was 20%, the convergence point showed up; when the fly ash content was 0, the air-entrained fly ash concrete had the best resistance to carbonation. With the help of PS and IPP, this paper calculated the RCA more accurately and found that, the freeze-thaw cycles can aggravate carbonization, and there is a linear relationship between carbonization depth and RCA. The research findings in this paper can provide a reference for the durability evaluation and design of concrete structures in severe cold areas.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"25 1","pages":"393-398"},"PeriodicalIF":0.6000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Carbonization Law of Fly Ash Concrete under Freeze-Thaw Cycles Based on Image-Pro Plus\",\"authors\":\"Jingguo Yuan, Bo Zhao, Zhenqiang Wang, Yan Liu\",\"doi\":\"10.18280/acsm.440604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To understand the influence of freeze-thaw on the carbonization performance of concrete in severe cold areas, this paper conducted experiments to explore the carbonization law of fly ash concrete under freeze-thaw cycles. First, carbonization tests were conducted under different freeze-thaw cycles and fly ash contents; then PS (Photoshop) and IPP (Image-Pro Plus) were adopted to measure the carbonized area and calculate the ratio of carbonized area (RCA). The experimental results showed that, when the fly ash content was between 10% and 30%, RCA increased slowly; when the fly ash content was 20%, the convergence point showed up; when the fly ash content was 0, the air-entrained fly ash concrete had the best resistance to carbonation. With the help of PS and IPP, this paper calculated the RCA more accurately and found that, the freeze-thaw cycles can aggravate carbonization, and there is a linear relationship between carbonization depth and RCA. The research findings in this paper can provide a reference for the durability evaluation and design of concrete structures in severe cold areas.\",\"PeriodicalId\":7897,\"journal\":{\"name\":\"Annales De Chimie-science Des Materiaux\",\"volume\":\"25 1\",\"pages\":\"393-398\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De Chimie-science Des Materiaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/acsm.440604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.440604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

为了解冻融对严寒地区混凝土碳化性能的影响,本文开展了冻融循环下粉煤灰混凝土碳化规律的试验研究。首先,进行了不同冻融循环次数和粉煤灰掺量下的炭化试验;然后采用PS (Photoshop)和IPP (Image-Pro Plus)测量炭化面积,计算炭化面积比(RCA)。试验结果表明,当粉煤灰掺量在10% ~ 30%之间时,RCA增长缓慢;当粉煤灰掺量为20%时,出现了收敛点;粉煤灰掺量为0时,掺气粉煤灰混凝土抗碳化性能最好。利用PS和IPP对RCA进行了更精确的计算,发现冻融循环会加剧炭化,且炭化深度与RCA呈线性关系。本文的研究成果可为严寒地区混凝土结构的耐久性评价和设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbonization Law of Fly Ash Concrete under Freeze-Thaw Cycles Based on Image-Pro Plus
To understand the influence of freeze-thaw on the carbonization performance of concrete in severe cold areas, this paper conducted experiments to explore the carbonization law of fly ash concrete under freeze-thaw cycles. First, carbonization tests were conducted under different freeze-thaw cycles and fly ash contents; then PS (Photoshop) and IPP (Image-Pro Plus) were adopted to measure the carbonized area and calculate the ratio of carbonized area (RCA). The experimental results showed that, when the fly ash content was between 10% and 30%, RCA increased slowly; when the fly ash content was 20%, the convergence point showed up; when the fly ash content was 0, the air-entrained fly ash concrete had the best resistance to carbonation. With the help of PS and IPP, this paper calculated the RCA more accurately and found that, the freeze-thaw cycles can aggravate carbonization, and there is a linear relationship between carbonization depth and RCA. The research findings in this paper can provide a reference for the durability evaluation and design of concrete structures in severe cold areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales De Chimie-science Des Materiaux
Annales De Chimie-science Des Materiaux 工程技术-材料科学:综合
CiteScore
1.70
自引率
25.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信