模型同位催化剂的制备与表征:Rh配原子、纳米粒子和Fe3O4上的混合氧化物表面

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Marcus A. Sharp, Christopher J. Lee, Mausumi Mahapatra, R. Scott Smith, Bruce D. Kay* and Zdenek Dohnálek*, 
{"title":"模型同位催化剂的制备与表征:Rh配原子、纳米粒子和Fe3O4上的混合氧化物表面","authors":"Marcus A. Sharp,&nbsp;Christopher J. Lee,&nbsp;Mausumi Mahapatra,&nbsp;R. Scott Smith,&nbsp;Bruce D. Kay* and Zdenek Dohnálek*,&nbsp;","doi":"10.1021/acs.jpcc.2c03426","DOIUrl":null,"url":null,"abstract":"<p >The atomic-level characterization of active sites is essential to understanding the mechanisms behind catalytic reactions. In this study, using scanning tunneling microscopy and X-ray photoelectron spectroscopy, we follow the morphological changes of a model Rh catalyst supported on Fe<sub>3</sub>O<sub>4</sub>(001) as a function of temperature and Rh coverage. We identify the preparation conditions leading to model catalysts containing homotopic or nearly homotopic Rh species bound as adatoms, substitutional octahedral sites within the Fe<sub>3</sub>O<sub>4</sub>(001), and nanoparticles. Adsorbates such as CO and CO<sub>2</sub> are subsequently used to characterize the properties of different Rh sites. Using temperature-programmed desorption, we demonstrate that adatoms and nanoparticles exhibit high-temperature CO desorption (250–600 K). Strong binding on such sites further allows for CO oxidation to CO<sub>2</sub> via the Mars–van Krevelen mechanism. In contrast, CO<sub>2</sub> was found to interact weakly with all Rh sites. Differences in desorption temperature enable the use of CO and CO<sub>2</sub> as titration methods for nanoparticles and Fe<sub>3</sub>O<sub>4</sub>(001), respectively. A small quantity of CO<sub>2</sub> was found to be reduced to CO on Rh adatoms and small nanoparticles.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"126 34","pages":"14448–14459"},"PeriodicalIF":3.3000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preparation and Characterization of Model Homotopic Catalysts: Rh Adatoms, Nanoparticles, and Mixed Oxide Surfaces on Fe3O4(001)\",\"authors\":\"Marcus A. Sharp,&nbsp;Christopher J. Lee,&nbsp;Mausumi Mahapatra,&nbsp;R. Scott Smith,&nbsp;Bruce D. Kay* and Zdenek Dohnálek*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.2c03426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The atomic-level characterization of active sites is essential to understanding the mechanisms behind catalytic reactions. In this study, using scanning tunneling microscopy and X-ray photoelectron spectroscopy, we follow the morphological changes of a model Rh catalyst supported on Fe<sub>3</sub>O<sub>4</sub>(001) as a function of temperature and Rh coverage. We identify the preparation conditions leading to model catalysts containing homotopic or nearly homotopic Rh species bound as adatoms, substitutional octahedral sites within the Fe<sub>3</sub>O<sub>4</sub>(001), and nanoparticles. Adsorbates such as CO and CO<sub>2</sub> are subsequently used to characterize the properties of different Rh sites. Using temperature-programmed desorption, we demonstrate that adatoms and nanoparticles exhibit high-temperature CO desorption (250–600 K). Strong binding on such sites further allows for CO oxidation to CO<sub>2</sub> via the Mars–van Krevelen mechanism. In contrast, CO<sub>2</sub> was found to interact weakly with all Rh sites. Differences in desorption temperature enable the use of CO and CO<sub>2</sub> as titration methods for nanoparticles and Fe<sub>3</sub>O<sub>4</sub>(001), respectively. A small quantity of CO<sub>2</sub> was found to be reduced to CO on Rh adatoms and small nanoparticles.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"126 34\",\"pages\":\"14448–14459\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.2c03426\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.2c03426","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

活性位点的原子水平表征对于理解催化反应背后的机制至关重要。在这项研究中,我们使用扫描隧道显微镜和x射线光电子能谱,跟踪了Fe3O4(001)负载的模型Rh催化剂的形态变化作为温度和Rh覆盖率的函数。我们确定了导致模型催化剂的制备条件,这些催化剂含有同位或近同位的Rh物种结合为附原子,Fe3O4(001)内的取代八面体位点和纳米颗粒。吸附剂如CO和CO2随后被用来表征不同Rh位点的性质。通过温度程序解吸,我们证明了附着原子和纳米颗粒表现出高温CO解吸(250-600 K)。在这些位点上的强结合进一步允许CO通过Mars-van Krevelen机制氧化为CO2。相反,CO2与所有Rh位点的相互作用都很弱。由于解吸温度的差异,可以分别使用CO和CO2作为纳米颗粒和Fe3O4(001)的滴定方法。少量的CO2在Rh吸附原子和小纳米颗粒上被还原为CO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Preparation and Characterization of Model Homotopic Catalysts: Rh Adatoms, Nanoparticles, and Mixed Oxide Surfaces on Fe3O4(001)

Preparation and Characterization of Model Homotopic Catalysts: Rh Adatoms, Nanoparticles, and Mixed Oxide Surfaces on Fe3O4(001)

The atomic-level characterization of active sites is essential to understanding the mechanisms behind catalytic reactions. In this study, using scanning tunneling microscopy and X-ray photoelectron spectroscopy, we follow the morphological changes of a model Rh catalyst supported on Fe3O4(001) as a function of temperature and Rh coverage. We identify the preparation conditions leading to model catalysts containing homotopic or nearly homotopic Rh species bound as adatoms, substitutional octahedral sites within the Fe3O4(001), and nanoparticles. Adsorbates such as CO and CO2 are subsequently used to characterize the properties of different Rh sites. Using temperature-programmed desorption, we demonstrate that adatoms and nanoparticles exhibit high-temperature CO desorption (250–600 K). Strong binding on such sites further allows for CO oxidation to CO2 via the Mars–van Krevelen mechanism. In contrast, CO2 was found to interact weakly with all Rh sites. Differences in desorption temperature enable the use of CO and CO2 as titration methods for nanoparticles and Fe3O4(001), respectively. A small quantity of CO2 was found to be reduced to CO on Rh adatoms and small nanoparticles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信