虚自由群的有限生成子半群

IF 0.1 Q4 MATHEMATICS
Pedro V. Silva, A. Zakharov
{"title":"虚自由群的有限生成子半群","authors":"Pedro V. Silva, A. Zakharov","doi":"10.1515/gcc-2018-0008","DOIUrl":null,"url":null,"abstract":"Abstract We prove that it is decidable whether or not a finitely generated submonoid of a virtually free group is graded, introduce a new geometric characterization of graded submonoids in virtually free groups as quasi-geodesic submonoids, and show that their word problem is rational (as a relation). We also solve the isomorphism problem for this class of monoids, generalizing earlier results for submonoids of free monoids. We also prove that the classes of graded monoids, regular monoids and Kleene monoids coincide for submonoids of free groups.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"43 1","pages":"63 - 82"},"PeriodicalIF":0.1000,"publicationDate":"2018-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On finitely generated submonoids of virtually free groups\",\"authors\":\"Pedro V. Silva, A. Zakharov\",\"doi\":\"10.1515/gcc-2018-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove that it is decidable whether or not a finitely generated submonoid of a virtually free group is graded, introduce a new geometric characterization of graded submonoids in virtually free groups as quasi-geodesic submonoids, and show that their word problem is rational (as a relation). We also solve the isomorphism problem for this class of monoids, generalizing earlier results for submonoids of free monoids. We also prove that the classes of graded monoids, regular monoids and Kleene monoids coincide for submonoids of free groups.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"43 1\",\"pages\":\"63 - 82\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2018-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2018-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文证明了虚自由群的有限生成子模群是否是可判别的,引入了虚自由群中的拟测地线子模群的一个新的几何刻划,并证明了它们的字问题是有理的(作为关系)。我们还解决了这类半群的同构问题,推广了之前关于自由半群的次半群的结果。我们还证明了自由群的次模群的梯度模群、正则模群和Kleene模群的类重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On finitely generated submonoids of virtually free groups
Abstract We prove that it is decidable whether or not a finitely generated submonoid of a virtually free group is graded, introduce a new geometric characterization of graded submonoids in virtually free groups as quasi-geodesic submonoids, and show that their word problem is rational (as a relation). We also solve the isomorphism problem for this class of monoids, generalizing earlier results for submonoids of free monoids. We also prove that the classes of graded monoids, regular monoids and Kleene monoids coincide for submonoids of free groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信