最大距离可分离(MDS)矩阵的大小为m × m / Zq

Septa Windy Nitalessy, M. Mananohas, R. Tumilaar, Angelina Patricia Amanda, Tesalonika Angela Tumey
{"title":"最大距离可分离(MDS)矩阵的大小为m × m / Zq","authors":"Septa Windy Nitalessy, M. Mananohas, R. Tumilaar, Angelina Patricia Amanda, Tesalonika Angela Tumey","doi":"10.35799/jm.v11i2.41387","DOIUrl":null,"url":null,"abstract":"The Maximum Distance Separable (MDS) code is one of the codes that known as error-correcting code where the generator matrix [I|A] is arranged by the identity matrix and the MDS matrix. In coding, MDS matrix can detect and correct errors optimally. A matrix over the Zq is called an MDS matrix if and only if all the determinants of its square submatrix are non-zero. A matrix over the Zq is called an MDS matrix if and only if all the determinants of its square submatrix are non-zero. In m x m matrix over Zq, the analyzed of possible entries and determinants of submatrix can be declare the existence of an MDS matrix of size m x m over Zq. The result is there will be no MDS matrix of size m x m where m greater than or equal to [(q-1)^2 + 1] - [q-2] for Zq with any of q. For Zq  with q prime, there will be no MDS matrix of size m x m where m greater than or equal to [(q-1)^2 + 1] - [q-2] - [1/2 x (q-1)].","PeriodicalId":53333,"journal":{"name":"Jurnal MIPA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Distance Separable (MDS) Matrix of size m x m over Zq\",\"authors\":\"Septa Windy Nitalessy, M. Mananohas, R. Tumilaar, Angelina Patricia Amanda, Tesalonika Angela Tumey\",\"doi\":\"10.35799/jm.v11i2.41387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Maximum Distance Separable (MDS) code is one of the codes that known as error-correcting code where the generator matrix [I|A] is arranged by the identity matrix and the MDS matrix. In coding, MDS matrix can detect and correct errors optimally. A matrix over the Zq is called an MDS matrix if and only if all the determinants of its square submatrix are non-zero. A matrix over the Zq is called an MDS matrix if and only if all the determinants of its square submatrix are non-zero. In m x m matrix over Zq, the analyzed of possible entries and determinants of submatrix can be declare the existence of an MDS matrix of size m x m over Zq. The result is there will be no MDS matrix of size m x m where m greater than or equal to [(q-1)^2 + 1] - [q-2] for Zq with any of q. For Zq  with q prime, there will be no MDS matrix of size m x m where m greater than or equal to [(q-1)^2 + 1] - [q-2] - [1/2 x (q-1)].\",\"PeriodicalId\":53333,\"journal\":{\"name\":\"Jurnal MIPA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal MIPA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35799/jm.v11i2.41387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal MIPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35799/jm.v11i2.41387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最大距离可分离码(MDS)是纠错码的一种,其产生矩阵[I|A]由单位矩阵和最大距离可分离矩阵组成。在编码过程中,MDS矩阵可以最优地检测和纠正错误。一个矩阵在Zq上被称为MDS矩阵当且仅当它的平方子矩阵的所有行列式都是非零的。一个矩阵在Zq上被称为MDS矩阵当且仅当它的平方子矩阵的所有行列式都是非零的。在Zq上的m × m矩阵中,对子矩阵的可能元素和行列式的分析可以声明存在一个大小为m × m / Zq的MDS矩阵。结果是不存在大小为m x m且m大于或等于[(q-1)^2 + 1] - [q-2]的MDS矩阵。对于具有q '的Zq,不存在大小为m x m且m大于或等于[(q-1)^2 + 1] - [q-2] - [1/2 x (q-1)]的MDS矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Distance Separable (MDS) Matrix of size m x m over Zq
The Maximum Distance Separable (MDS) code is one of the codes that known as error-correcting code where the generator matrix [I|A] is arranged by the identity matrix and the MDS matrix. In coding, MDS matrix can detect and correct errors optimally. A matrix over the Zq is called an MDS matrix if and only if all the determinants of its square submatrix are non-zero. A matrix over the Zq is called an MDS matrix if and only if all the determinants of its square submatrix are non-zero. In m x m matrix over Zq, the analyzed of possible entries and determinants of submatrix can be declare the existence of an MDS matrix of size m x m over Zq. The result is there will be no MDS matrix of size m x m where m greater than or equal to [(q-1)^2 + 1] - [q-2] for Zq with any of q. For Zq  with q prime, there will be no MDS matrix of size m x m where m greater than or equal to [(q-1)^2 + 1] - [q-2] - [1/2 x (q-1)].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信