{"title":"奶牛个体效应、日粮、环境温度和牛角状态对瑞士棕色奶牛牛奶延迟发光的重要性","authors":"Jenifer Wohlers, P. Stolz","doi":"10.3390/dairy3030037","DOIUrl":null,"url":null,"abstract":"To investigate the importance of cow-individual effects and the importance of horn status (horned vs. disbudded), of diet (hay with and without concentrates), and of ambient temperature (10 °C vs. 25 °C) on delayed luminescence (DL) parameters of milk samples, fluorescence excitation spectroscopic (FES) measurements were performed on a total of n = 152 milk samples from 20 cows of a cross-over experiment. Cow-individual variation was investigated in relation to the horn status, diet effects were evaluated by cow in relation to sampling effects, and regression analysis was used to evaluate the importance of the experimental factors on the variation of emission parameters. Variation of short-term emission after yellow excitation (530 to 800 nm) was predominantly related to the individual cow (disbudded cows tended to higher values), and was partly affected by feeding, with higher emission for concentrate-added diets. Short-term emission after white excitation (260 to 850 nm) was most related to ambient temperature, with higher values at warm temperature. Higher emission was observed also in aged (stored) samples or after delayed cooling. The emission after yellow showed to be more robust to handling and ageing of the milk than the emission after white; possible relations to digestive processes of the cow (including the microbiome) are warranted.","PeriodicalId":11001,"journal":{"name":"Dairy Science & Technology","volume":"190 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Importance of Cow-Individual Effects and Diet, Ambient Temperature, and Horn Status on Delayed Luminescence of Milk from Brown Swiss Dairy Cows\",\"authors\":\"Jenifer Wohlers, P. Stolz\",\"doi\":\"10.3390/dairy3030037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the importance of cow-individual effects and the importance of horn status (horned vs. disbudded), of diet (hay with and without concentrates), and of ambient temperature (10 °C vs. 25 °C) on delayed luminescence (DL) parameters of milk samples, fluorescence excitation spectroscopic (FES) measurements were performed on a total of n = 152 milk samples from 20 cows of a cross-over experiment. Cow-individual variation was investigated in relation to the horn status, diet effects were evaluated by cow in relation to sampling effects, and regression analysis was used to evaluate the importance of the experimental factors on the variation of emission parameters. Variation of short-term emission after yellow excitation (530 to 800 nm) was predominantly related to the individual cow (disbudded cows tended to higher values), and was partly affected by feeding, with higher emission for concentrate-added diets. Short-term emission after white excitation (260 to 850 nm) was most related to ambient temperature, with higher values at warm temperature. Higher emission was observed also in aged (stored) samples or after delayed cooling. The emission after yellow showed to be more robust to handling and ageing of the milk than the emission after white; possible relations to digestive processes of the cow (including the microbiome) are warranted.\",\"PeriodicalId\":11001,\"journal\":{\"name\":\"Dairy Science & Technology\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dairy Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dairy3030037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dairy Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dairy3030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
The Importance of Cow-Individual Effects and Diet, Ambient Temperature, and Horn Status on Delayed Luminescence of Milk from Brown Swiss Dairy Cows
To investigate the importance of cow-individual effects and the importance of horn status (horned vs. disbudded), of diet (hay with and without concentrates), and of ambient temperature (10 °C vs. 25 °C) on delayed luminescence (DL) parameters of milk samples, fluorescence excitation spectroscopic (FES) measurements were performed on a total of n = 152 milk samples from 20 cows of a cross-over experiment. Cow-individual variation was investigated in relation to the horn status, diet effects were evaluated by cow in relation to sampling effects, and regression analysis was used to evaluate the importance of the experimental factors on the variation of emission parameters. Variation of short-term emission after yellow excitation (530 to 800 nm) was predominantly related to the individual cow (disbudded cows tended to higher values), and was partly affected by feeding, with higher emission for concentrate-added diets. Short-term emission after white excitation (260 to 850 nm) was most related to ambient temperature, with higher values at warm temperature. Higher emission was observed also in aged (stored) samples or after delayed cooling. The emission after yellow showed to be more robust to handling and ageing of the milk than the emission after white; possible relations to digestive processes of the cow (including the microbiome) are warranted.