{"title":"澳大利亚软层建筑的倒塌概率及其对基于风险的抗震设计的影响","authors":"H. Tsang, John L. Wilson, E. Gad","doi":"10.1080/13287982.2020.1835157","DOIUrl":null,"url":null,"abstract":"ABSTRACT Collapse prevention is the primary objective of earthquake-resistant design of structures; hence, the probability of collapse should be taken as a crucial performance indicator for risk-based design of new structures or assessment of existing structures. One major challenge in collapse risk assessment is to reliably model the non-linear structural response behaviour. This study features the rocking response behaviour of precast reinforced concrete (RC) columns based on results from previous field testing on parts of a real building and supplemented with a study of their rocking behaviours through a series of shake-table tests. The effects of bidirectional earthquake actions on failure drift capacity of columns have also been incorporated, such that realistic estimates of displacement capacity were made for constructing collapse fragility functions, which were then combined with the ground motion recurrence relationships of Melbourne, Australia for the computation of collapse probability. A suite of typical soft-storey buildings was adopted, with considerations given to a diversity of site conditions. Deaggregation of the results reveals the range of return periods that controls the collapse risk, which could have important implications for the choice of earthquake scenarios for seismic analysis and design in regions of lower seismicity.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":"95 1","pages":"307 - 319"},"PeriodicalIF":0.9000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Collapse probability of soft-storey building in Australia and implications for risk-based seismic design\",\"authors\":\"H. Tsang, John L. Wilson, E. Gad\",\"doi\":\"10.1080/13287982.2020.1835157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Collapse prevention is the primary objective of earthquake-resistant design of structures; hence, the probability of collapse should be taken as a crucial performance indicator for risk-based design of new structures or assessment of existing structures. One major challenge in collapse risk assessment is to reliably model the non-linear structural response behaviour. This study features the rocking response behaviour of precast reinforced concrete (RC) columns based on results from previous field testing on parts of a real building and supplemented with a study of their rocking behaviours through a series of shake-table tests. The effects of bidirectional earthquake actions on failure drift capacity of columns have also been incorporated, such that realistic estimates of displacement capacity were made for constructing collapse fragility functions, which were then combined with the ground motion recurrence relationships of Melbourne, Australia for the computation of collapse probability. A suite of typical soft-storey buildings was adopted, with considerations given to a diversity of site conditions. Deaggregation of the results reveals the range of return periods that controls the collapse risk, which could have important implications for the choice of earthquake scenarios for seismic analysis and design in regions of lower seismicity.\",\"PeriodicalId\":45617,\"journal\":{\"name\":\"Australian Journal of Structural Engineering\",\"volume\":\"95 1\",\"pages\":\"307 - 319\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13287982.2020.1835157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2020.1835157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Collapse probability of soft-storey building in Australia and implications for risk-based seismic design
ABSTRACT Collapse prevention is the primary objective of earthquake-resistant design of structures; hence, the probability of collapse should be taken as a crucial performance indicator for risk-based design of new structures or assessment of existing structures. One major challenge in collapse risk assessment is to reliably model the non-linear structural response behaviour. This study features the rocking response behaviour of precast reinforced concrete (RC) columns based on results from previous field testing on parts of a real building and supplemented with a study of their rocking behaviours through a series of shake-table tests. The effects of bidirectional earthquake actions on failure drift capacity of columns have also been incorporated, such that realistic estimates of displacement capacity were made for constructing collapse fragility functions, which were then combined with the ground motion recurrence relationships of Melbourne, Australia for the computation of collapse probability. A suite of typical soft-storey buildings was adopted, with considerations given to a diversity of site conditions. Deaggregation of the results reveals the range of return periods that controls the collapse risk, which could have important implications for the choice of earthquake scenarios for seismic analysis and design in regions of lower seismicity.
期刊介绍:
The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.