Dmitriy D. Bruder, Megan E. McGovern, R. James, Teresa Rinker, V. Gattani
{"title":"激光超声全聚焦法在电池箔焊缝检测中的应用","authors":"Dmitriy D. Bruder, Megan E. McGovern, R. James, Teresa Rinker, V. Gattani","doi":"10.1080/09349847.2023.2195369","DOIUrl":null,"url":null,"abstract":"ABSTRACT The feasibility of using laser-generated ultrasonic Total Focusing Method (TFM) was assessed for guided ultrasonic waves in finite plates. The application under consideration is for inspection of ultrasonically welded battery tab-to-electrode foil stack joints. The testing constraints for this weld necessitate couplant-free, remote, guided-wave conditions making laser ultrasonic TFM an ideal inspection technique. It was determined that laser-generated guided wave TFM can be used to remotely assess defects in a finite plate when the defects are strong reflectors in the plane of wave propagation. The finite dimensions of the tab require a strong understanding of the edge reflection effects on the TFM image. The guided wave modes used in this study were strongly affected by scattering due to the complex weld geometry, which most resembles that of a periodic triangular grated wave guide. Future work will investigate methods to compensate for the strong scattering/guided wave effects, the use of other guided wave geometries, out of plane TFM reconstruction for other weld defect types, as well as apodization effects.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"217 1","pages":"83 - 100"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessment of Laser-Generated Ultrasonic Total Focusing Method for Battery Cell Foil Weld Inspection\",\"authors\":\"Dmitriy D. Bruder, Megan E. McGovern, R. James, Teresa Rinker, V. Gattani\",\"doi\":\"10.1080/09349847.2023.2195369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The feasibility of using laser-generated ultrasonic Total Focusing Method (TFM) was assessed for guided ultrasonic waves in finite plates. The application under consideration is for inspection of ultrasonically welded battery tab-to-electrode foil stack joints. The testing constraints for this weld necessitate couplant-free, remote, guided-wave conditions making laser ultrasonic TFM an ideal inspection technique. It was determined that laser-generated guided wave TFM can be used to remotely assess defects in a finite plate when the defects are strong reflectors in the plane of wave propagation. The finite dimensions of the tab require a strong understanding of the edge reflection effects on the TFM image. The guided wave modes used in this study were strongly affected by scattering due to the complex weld geometry, which most resembles that of a periodic triangular grated wave guide. Future work will investigate methods to compensate for the strong scattering/guided wave effects, the use of other guided wave geometries, out of plane TFM reconstruction for other weld defect types, as well as apodization effects.\",\"PeriodicalId\":54493,\"journal\":{\"name\":\"Research in Nondestructive Evaluation\",\"volume\":\"217 1\",\"pages\":\"83 - 100\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09349847.2023.2195369\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2023.2195369","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Assessment of Laser-Generated Ultrasonic Total Focusing Method for Battery Cell Foil Weld Inspection
ABSTRACT The feasibility of using laser-generated ultrasonic Total Focusing Method (TFM) was assessed for guided ultrasonic waves in finite plates. The application under consideration is for inspection of ultrasonically welded battery tab-to-electrode foil stack joints. The testing constraints for this weld necessitate couplant-free, remote, guided-wave conditions making laser ultrasonic TFM an ideal inspection technique. It was determined that laser-generated guided wave TFM can be used to remotely assess defects in a finite plate when the defects are strong reflectors in the plane of wave propagation. The finite dimensions of the tab require a strong understanding of the edge reflection effects on the TFM image. The guided wave modes used in this study were strongly affected by scattering due to the complex weld geometry, which most resembles that of a periodic triangular grated wave guide. Future work will investigate methods to compensate for the strong scattering/guided wave effects, the use of other guided wave geometries, out of plane TFM reconstruction for other weld defect types, as well as apodization effects.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.